DOI QR코드

DOI QR Code

Enzymatic Conjugation of RGD Peptides on the Surface of Fibroin Microspheres

  • Jeon, Hyun Sang (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Lee, Jin Sil (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Hur, Won (Department of Biotech & Bioengineering, Kangwon National University)
  • Received : 2019.12.30
  • Accepted : 2020.01.08
  • Published : 2020.02.10

Abstract

Biomaterials are frequently functionalized with Arg-Gly-Asp (RGD) peptides to provide cell adhesion sites. In this study, RGD peptides were enzymatically coupled on to the surface of fibroin microspheres. Papain exhibited a strong preference for dansyl phenylalanine for the peptide formation with fibroin microspheres. Thus, RGD1 peptide was designed to carry cysteine to both sides of the sequence, glycine as a spacer and two residues of phenylalanine at the C-terminal (CRGDCGFF). The enzymatic modification facilitated by an increasing amount of substrate and by the presence of organic solvent, dimethylsulfoxide at 25% (v/v). Microspheres coupled with RGD1, showed a significantly different precipitation property and an increased apparent volume, possibly due to the steric hindrance of RGD peptides on the surface. Transmission electron microscopy also confirmed the presence of cysteine residues in RGD1 coupled on the surface of microspheres stained with gold nanoparticles. RGD1-microspheres significantly facilitated the growth of murine fibroblast 3T3 cells even under non-adhesion culture conditions.

Keywords

References

  1. S. Bellis, Advantages of RGD peptides for directing cell association with biomaterials, Biomaterials, 32, 4205-4210 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.029
  2. E. Ruoslahti and M. D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins, Science, 238, 491-497 (1987). https://doi.org/10.1126/science.2821619
  3. F. Wang, Y. Li, Y. Shen, A. Wang, S. Wang, and T. Xie, The functions and applications of RGD in tumor therapy and tissue engineering, Int. J. Mol. Sci., 14, 13447-13462 (2013). https://doi.org/10.3390/ijms140713447
  4. U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond, Biomaterials, 24(24), 4385-4415 (2003). https://doi.org/10.1016/S0142-9612(03)00343-0
  5. L. A. Carpino, H. Shroff, S. A. Triolo, E. M. E. Mansour, H. Wenschuh, and F. Albericio, The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side-chain protectant, Tetrahedron Lett., 34, 7829-7832 (1993). https://doi.org/10.1016/S0040-4039(00)61487-9
  6. D. L. Hern and J. A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing, J. Biomed. Mater. Res., 39, 266-276 (1998). https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<266::AID-JBM14>3.0.CO;2-B
  7. S. S. Lateef, S. Boateng, T. J. Hartman, C. A. Crot, B. Russell, and L. Hanley, GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion, Biomaterials, 23, 3159-3168 (2002). https://doi.org/10.1016/S0142-9612(02)00062-5
  8. C. Vepari and D. J. Kaplan, Silk as a biomaterial, Prog. Polym. Sci., 32(8-9), 991-1007 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.013
  9. E. J. Kim, S. Y. Lee, and W. Hur, Preparation of core-shell microcapsules using nanodispersed fibroin, J. Appl. Polym. Sci., 121(6), 3460-3465 (2011). https://doi.org/10.1002/app.33997
  10. R. V. Ulijn, B. Baragana, P. J. Halling, and S. L. Flitsch, Protease-catalyzed peptide synthesis on solid support, J. Am. Chem. Soc., 124(37), 10988-10989 (2002). https://doi.org/10.1021/ja026912d
  11. M. Schuster, B. Munoz, W. Yuan, and C. H. Wong, Papain-catalyzed synthesis of peptide isosteres, Tetrahedron Lett., 34(8), 1247-1250 (1993). https://doi.org/10.1016/S0040-4039(00)91765-9
  12. C. K. Riener, G. Kada, and H. J. Gruber, Quick measurement of protein sulfhydryls with Ellman's reagent and with 4, 4'-dithiodipyridine, Anal. Bioanal. Chem., 373(4-5), 266-276 (2002). https://doi.org/10.1007/s00216-002-1347-2
  13. J. M. Walker, The dansyl method for identifying N-terminal amino acids. In: J. M. Walker (ed.), Basic Protein and Peptide Protocols, 321-328, Humana Press (1994).
  14. C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res., 28(12), 2413-2419 (2000). https://doi.org/10.1093/nar/28.12.2413
  15. K. Morihara and T. Oka, Peptide bond synthesis catalyzed by subtilisin, papain, and pepsin, J. Biochem., 89(2), 85-395 (1981).
  16. G. Anderson and P. L. Luisi, Papain-induced oligomerization of ${\alpha}$-amino acid esters, Helv. Chim. Acta, 62, 488-494 (1979). https://doi.org/10.1002/hlca.19790620214
  17. F. Lecaille, C. Serveau, F. Gauthier, and G. Lalmanach, Revisiting the S2 specificity of papain by structural analogs of Phe, FEBS Lett., 445(2-3), 311-314 (1999). https://doi.org/10.1016/S0014-5793(99)00143-X
  18. R. Leary, D. Larsen, H. Watanabe, and E. Shaw, Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases Papain, Biochemistry, 16(26), 5857-5861 (1977). https://doi.org/10.1021/bi00645a033
  19. Y. V. Mitin, K. Braun, and P. Kuhl, Papain catalyzed synthesis of glyceryl esters of N-protected amino acids and peptides for the use in trypsin catalyzed peptide synthesis, Biotechnol. Bioeng., 54(3), 287-290 (1997). https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3<287::AID-BIT9>3.0.CO;2-B
  20. C. H. O'Neill, P. N. Riddle, and P. W. Jordan, The relation between surface area and anchorage dependence of growth in hamster and mouse fibroblasts. Cell, 16(4), 909-918 (1979). https://doi.org/10.1016/0092-8674(79)90106-5
  21. S. L. Bellis, Advantages of RGD peptides for directing cell association with biomaterials, Biomaterials, 32(18), 4205-4210 (2011). https://doi.org/10.1016/j.biomaterials.2011.02.029