• Title/Summary/Keyword: fill materials

Search Result 515, Processing Time 0.026 seconds

Evaluation Method for Non-linear Shear Strength of Gravel Materials (자갈질 재료의 비선형적 전단강도 특성 평가법)

  • Shin, Dong-Hoon;Cho, Seong-Eun;Lim, Eun-Sang;Park, Han-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.288-298
    • /
    • 2009
  • It is well known that the peak strength envelope of geomaterials with no cohesion, such as sand, gravel and rockfill, exhibits significant curvature over a range of stresses. In a practical design of slope, however, the linear Mohr-Coulomb's failure envelope is used as a failure criterion and consequently gives inaccurate safety factors, especially for some ranges of small normal stresses on shallow failure surfaces. Necessity of a nonlinear shear strength envelope in slope stability analysis is on this point. Hence, this study describes how to evaluate nonlinear shear strength of gravel fill materials using the results of large triaxial tests under consolidated-drained condition, and compares the safety factors from slope stability analyses for a homogeneous gravel fill or rockfill embankment incorporating the non-linearity of strength, so as to show its effects on safety factors.

  • PDF

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Long-term Settlement of High Speed Railway Embankment Compacted under Dry/Wet Condition (고속철도 토공구간 쌓기 재료의 다짐함수비 조건에 따른 장기침하 특성)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Jin-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1268-1277
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. This wetting collapse problem for the compressibility of compacted sands, gravels and rockfills, has been recognized by several researchers. For this wetting settlement problem, we showed the test results carried out with 4 fill materials. These tests were performed under the condition that the fill materials were inundated at the first wetting. Subsequently, in this study, we investigated the long-term settlement characteristics of the fill materials under the repeated partial wetting and rising of the ground water table happend by rainfall.

  • PDF

Effect of Characteristics of Sand/Gravel and Rock Materials on Behavior of Dam during Construction and Impounding (사력재와 석산재의 특성이 축조와 담수시 댐체 거동에 미치는 영향)

  • Seo, Min-Woo;Cho, Sung-Eun;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.45-55
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages which it has compared with rockfill dam and recently, sand/gravel materials, Instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In Korea, two dams using sand/gravel materials as a main fill material were designed and are being constructed. In this research, the strength and deformation characteristics of the rockfill and sand/gravel materials taken from 2 dam sites were tested by using a laboratory large triaxial testing equipment for a total of 7 cases. From the results of large triaxial and compaction tests, it was observed that two kinds of materials show a little different compaction, shear strenght and deformation characteristics. It could be expected that the shear strength of sand/gravel material was not disadvantageous compared with that of rockfill materials, however, there was some difference between two materials with respect to behavior characteristics. On the other hand, smaller displacements were observed from numerical analysis based on the data from a large triaxial test when the sand/gravel is used as a main fill material compared with the case when the crushed rock material is used as a main fill material. Finally, in spite of a little different shear strength and behavior characteristic between two materials, it was concluded that it will not lead to a significant problem when the sand/gravel material is used as a main rockfill material.

Relationship between battery level and irradiance of light-curing units and their effects on the hardness of a bulk-fill composite resin

  • Fernanda Harumi Oku Prochnow ;Patricia Valeria Manozzo Kunz;Gisele Maria Correr;Marina da Rosa Kaizer;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2022
  • Objectives: This study evaluated the relationship between the battery charge level and irradiance of light-emitting diode (LED) light-curing units (LCUs) and how these variables influence the Vickers hardness number (VHN) of a bulk-fill resin. Materials and Methods: Four LCUs were evaluated: Radii Plus (SDI), Radii-cal (SDI), Elipar Deep Cure (Filtek Bulk Fill, 3M Oral Care), and Poly Wireless (Kavo Kerr). Irradiance was measured using a radiometer every ten 20-second activations until the battery was discharged. Disks (4 mm thick) of a bulk-fill resin (Filtek Bulk Fill, 3M Oral Care) were prepared, and the VHN was determined on the top and bottom surfaces when light-cured with the LCUs with battery levels at 100%, 50% and 10%. Data were analyzed by 2-way analysis of variance, the Tukey's test, and Pearson correlations (α = 5%). Results: Elipar Deep Cure and Poly Wireless showed significant differences between the irradiance when the battery was fully charged versus discharged (10% battery level). Significant differences in irradiance were detected among all LCUs, within each battery condition tested. Hardness ratios below 80% were obtained for Radii-cal (10% battery level) and for Poly Wireless (50% and 10% battery levels). The battery level showed moderate and strong, but non-significant, positive correlations with the VHN and irradiance. Conclusions: Although the irradiance was different among LCUs, it decreased in half of the devices along with a reduction in battery level. In addition, the composite resin effectiveness of curing, measured by the hardness ratio, was reduced when the LCUs' battery was discharged.

Effect of dentin roughening and type of composite material on the restoration of non-carious cervical lesions: an in vivo study with 18 months of follow-up

  • Sanjana Verma;Rakesh Singla;Gurdeep Singh Gill;Namita Jain
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.35.1-35.14
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the impact of dentin roughening and the type of composite resin used (either bulk-fill flowable or nanohybrid) on the restoration of non-carious cervical lesions (NCCLs) with an 18-month follow-up period. Materials and Methods: This prospective split-mouth study included 36 patients, each with a minimum of 4 NCCLs. For each patient, 4 types of restorations were performed: unroughened dentin with nanohybrid composite, unroughened dentin with bulk-fill flowable composite, roughened dentin with nanohybrid composite, and roughened dentin with bulk-fill flowable composite. A universal bonding agent (Tetric N Bond Universal) was applied in self-etch mode for all groups. The restorations were subsequently evaluated at 6, 12, and 18 months in accordance with the criteria set by the FDI World Dental Federation. Inferential statistics were computed using the Friedman test, with the level of statistical significance established at 0.05. Results: The 4 groups exhibited no significant differences in relation to fracture and retention, marginal staining, marginal adaptation, postoperative hypersensitivity, or the recurrence of caries at any follow-up point. Conclusions: Within the limitations of the present study, over an 18-month follow-up period, no significant difference was present in the clinical performance of bulk-fill flowable and nanohybrid composite restorations of non-carious cervical lesions. This held true regardless of whether dentin roughening was performed.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

The Effects of the Annealing on the Reflow Property of Cu Thin Film (열처리에 따른 구리박막의 리플로우 특성)

  • Kim Dong-Won;Kim Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.1
    • /
    • pp.28-36
    • /
    • 2005
  • In this study, the reflow characteristics of copper thin films which is expected to be used as interconnection materials in the next generation semiconductor devices were investigated. Cu thin films were deposited on the TaN diffusion barrier by metal organic chemical vapor deposition (MOCVD) and annealed at the temperature between 250℃ and 550℃ in various ambient gases. When the Cu thin films were annealed in the hydrogen ambience compared with oxygen ambience, sheet resistance of Cu thin films decreased and the breakdown of TaN diffusion barrier was not occurred and a stable Cu/TaN/Si structure was formed at the annealing temperature of 450℃. In addition, reflow properties of Cu thin films could be enhanced in H₂ ambient. With Cu reflow process, we could fill the trench patterns of 0.16~0.24 11m with aspect ratio of 4.17~6.25 at the annealing temperature of 450℃ in hydrogen ambience. It is expected that Cu reflow process will be applied to fill the deep pattern with ultra fine structure in metallization.

응력-침투 연계 해석에 의한 필 댐의 최적 설계

  • Park, Chun-Sik;Lee, Jun-Suk;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.862-870
    • /
    • 2010
  • This thesis has been researched on optimized design method for the total cross section of embankment considering the fact that the size of embankment cross section is directly related with economic efficiency when dam designing. In general, embankment cross section of fill dam is either determined by cohesion and angle of internal friction, a strength parameter of embankment materials or by permeability of embankment. Therefore the size of embankment cross section depending on strength parameter of embankment materials was determined by using MIDAS-GTS program through stress-seepage coupled analysis at the time of fill dam design. As a result, determination of embankment cross section was more affected by the size of central core and permeability rather than by slope stability by shear strength and it was revealed that in case of embankment height being over 20m, stability against infiltration and slope action could be secured only when embankment slope is at least over 1:2.5. In addition, it was also revealed that in case of making the size of central core exceeding specification standard, total cross section of embankment could be reduced considerably and at the time of embankment design, adequate size and appropriateness of embankment cross section could be determined with referring the table suggested by this study.

  • PDF

Evaluation of Compressibility of Rock Fill Materials by Large-Scale Oedometer Tests (대형 오이도미터 시험을 통한 Rockfill 재료의 압축성 평가)

  • Kim, Bum-Joo;Shin, Dong-Hoon;Jeon, Je-Sung;Lim, Jeong-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.627-632
    • /
    • 2005
  • In this study, a series of large-scale oedometer tests was performed to investigate the compressibility of rock fill materials. The testing samples were prepared to have three different grain size distributions and for each distribution, exist in two different states(dried and saturated). The test results indicated that particle breakages occurred mainly for the particles larger than 4.75mm in size and increased with increasing grain sizes. Also, it was found that, for a dry sample as it became well-graged, its compressibility decreased and accordingly, its tangent constrained modulus increased. A comparion between the samples in dry and saturated states revealed that compressibility of the materials increases with increasing water content. The values of tangent constrained modulus calculated for the tested dry samples were larger by about 10 to 20%, on average, than those for the saturated samples.

  • PDF