• Title/Summary/Keyword: field emission scanning electron microscopy (FE-SEM)

Search Result 323, Processing Time 0.026 seconds

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles (초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구)

  • Kim, Min-Seon;Kim, Jae-Uk;Yoo, Jeong-Yeol;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Fabrication of ZnO Nanostructures with Various Growth Conditions by Vapor Phase Transport

  • Kim, So-A-Ram;Nam, Gi-Woong;Kim, Min-Su;Yim, Kwang-Gug;Kim, Do-Yeob; Leem, Jae-Youn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.250-250
    • /
    • 2011
  • Zinc oxide (ZnO) structures have great potential in many applications. Currently, the most commonly used method to grow ZnO nanostructres are the vapor transport method (VPT). The morphology of the ZnO structures largely related to the growth conditions, including growth temperature, distance between the substrate and source, and gas ambient. Previously ZnO nanosturecutres with high crystallinity were obtained at the growth temperature of 800$^{\circ}C$, in the argon and oxygen gas ambient. In this study, we report the properties of the ZnO nanostructures, which were synthesized on Au-catalyzed Si substrate by VPT, using a mixture of ZnO and graphite powders as source material under the different condition, including gas ratio of argon/oxygen and distance between substrate and source at the growth temperature of 800$^{\circ}C$. The structural and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL).

  • PDF

Fabrication and characterization of CdS film, nanowires and nanobelts grown by VPE

  • Son, Moon-A;Lee, Dong-Jin;Kang, Tae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.69-69
    • /
    • 2010
  • The research is the structural and optical characteristics of the Cadmium Sulfide(CdS) film, nanowires and nanobelts grown on the $Al_2O_3$ substrate using the vapor phase epitaxy method. The field-emission scanning electron microscopy(FE-SEM) were used to identify the shape of the surface of the nanostructures and x-ray diffraction(XRD) and transmission electron microscopy (TEM) were used to evaluate the structural characterisitcs. As a result, the XRD was confirmed the CdS peak and the substrate peak and TEM showed single crystals with wurtzite hexagonal structure on the nanostructures. As for the optical characteristic of the nanostructures, photoluminescence(PL) and micro-raman spectrum were measured. The PL measurements confirmed the emission peak related bound exciton to neutral donor($D^0X$) peak and free exciton(FX) peak. The micro-raman spectrum showed that the peak of the nanostructures were similar to the pure crystalline CdS peak and each peak were overtone of LO phonon of the hexagonal CdS of the longitudinal optical(LO) phonon mode. Therefore, it is confirmed that the CdS nanostructures grown in this research have superior crystallinity.

  • PDF

Effect of 3C-SiC buffer layer on the characteristics of AlN films supttered on Si Substrates (3C-SiC 버퍼층이 Si 기판위에 스퍼터링된 AlN 막의 특성에 미치는 영향)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.3-6
    • /
    • 2009
  • Aluminum nitride (AIN) thin films were deposited on a polycrystalline 3C-SiC intermediate layer by a pulsed reactive magnetron sputtering system. Characteristics of the AIN/SiC heterostructures were investigated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The columnar structure of AIN thin films was observed by FE-SEM. The surface roughness of AlN films on the 3C-SiC buffer layer was measured using AFM. The XRD pattern of AlN films on SiC buffer layers was highly oriented at (002). Full width at half maximum (FWHM) of the rocking curve near (002) reflections was $1.3^{\circ}$. The infrared absorbance spectrum indicated that the residual stress of AIN thin films grown on SiC buffer layers was nearly negligible. The 3C-SiC intermediate layers are promising for the realization of nitride based electronic and mechanical devices.

  • PDF

Ion release and Biocompatibility of Ti-6Al-4V Alloys for Dental application

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.303-303
    • /
    • 2015
  • In order to investigate ion release and biocompatibility of Ti-6Al-4V dental alloy by electrochemical corrosion test and MTT assay, commercial Ti-6Al-4V alloy rod (99.99% Ti, USA, Co) were used in the study. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer.

  • PDF

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

Photoactivity of SnO2-Doped TiO2 Powder Sensitized with Quinacridone (Quinacridone을 첨가시킨 SnO2가 도핑된 TiO2 분말의 광촉매 특성)

  • Jung, Miewon;Kwak, Yunjung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.650-653
    • /
    • 2007
  • $SnO_2$-doped $TiO_2$ powder was obtained from tin (IV) bis(acetylacetonate) dichloride and titanium diisopropoxide bis(acetylacetonate) with quinacridone as the dye sensitizer molecule. The structural changes of the reaction mixture were monitored by fourier transform infrared (FT-IR) spectroscopy. The morphology and microstructure of gel powder were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). The photocatalytic activity of these powders with the anatase structure was investigated by using indigo carmine solution as a test dye

Synthesis and Photoactivity of SnO2 - Doped Anatase - Type TiO2 Powder Via Polymerization - Complex Route (고분자 첨가법에 의해 SnO2가 도핑된 TiO2 분말의 합성 및 광촉매 특성)

  • Jung, Miewon;Kwak, Yunjung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.561-564
    • /
    • 2006
  • $SnO_{2}$-doped anatase type $TiO_{2}$ powder was prepared by the polymerization complex route from tin(IV) bis (acetylacetonate) dichloride, titanium diisopropoxide bis (acetylacetonate) and polyethylene glycol (PEG) as a complexing agent. The structural changes of reaction mixture were monitored by fourier transform infarared (FT-IR) spectroscopy. The microstructure and morphology of gel powder were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). The photocatalytic activity of these powders with the anatase structure was investigated by using indigo carmine solution.

Design and Preparation of Cathode for Large Sputtering Thin Film (대면적 스퍼터링 박막 제작을 위한 캐소드 설계 및 제작)

  • Kim, Yujin;Kim, Sangmo;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.53-57
    • /
    • 2019
  • In this study, we prepared sputtering cathode for large sputtering thin film in the facing targets sputtering(FTS) system. Before fabrication of cathode equipment, we investigated optimal magnetic flux in the sputtering cathode by using magnetic field stimulation(Comsol). According to the result of magnetic field stimulation, we manufactured the cathode. After we mounted laboratory-designed cathode on FTS system, the discharge properties were observed in vacuum condition. In addition, ITO films were deposited on glass substrate and their electrical and optical properties were investigated by various measurements (four-point probe, UV-VIS spectrometer, field emission scanning electron microscopy(FE-SEM), Hall-effect measurement).

The Dielectric Properties of $Bi_4Ti_3O_{12}$ Ferroelectric Thin Films Doping Neodymium (Neodymium이 첨가된 $Bi_4Ti_3O_{12}$ 강유전체 박막의 유전 특성)

  • Kwon, Hyun-Yul;Nam, Sung-Pill;Lee, Sang-Heon;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1829-1831
    • /
    • 2005
  • Ferroelectric $Bi_{3.25}Nd_{0.75}Ti_3O_{12}$(BNdT) thin films were proposed for capacitor of FeRAM. The BNdT thin films were grown on Pt/Ti $SiO_2/P-Si(100)$ substrates by the RF magnetron sputtering deposition. The dielectric properties of the BNdT were investigated by varying post-annealing temperatures. Increasing post-annealing temperature, the (117) peak was increased. An increase of rod type grains of BNdT films with increasing post-annealing temperature was observed by the Field Emission Scanning Electron Microscopy(FE-SEM). The dielectric constant and dielectric loss of the BNdT thin films with post-annealing temperature of $700^{\circ}C$ were 418 and 0.37, respectively.

  • PDF