• Title/Summary/Keyword: field emission device(FED)

Search Result 24, Processing Time 0.028 seconds

Pt nanoparticles-coated Carbon nanofiber for FED application

  • Lee, Won-Woo;Choi, Young-Min;Ryu, Beyong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1590-1592
    • /
    • 2007
  • In this study, we prepared CNF (carbon nanofiber) by the solvothermal method for FED (field emission display) applications. We controlled several conditions to synthesize effective CNF for field emission applications. Nano-sizesd Pt nanoparticles were coated on the CNF. In this study, we have applied Pt nanoparticles- coated CNF which can be produced in mass, to field emission application.

  • PDF

CNT Emitter Coated with Titanium Oxide Nanoparticles for FED Application

  • Kim, Jong-Ung;Ryu, Byong-Hwan;Moon, Hee-Sung;Kim, Jae-Myeong;No, Cho-Hang;Uk, Park-Seoung;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.937-939
    • /
    • 2007
  • Carbon nanotubes (CNTs) have used as an electron field emitter of the field emission display (FED) due to their characteristics of high-electron emission, rapid response and low power consumption. However, to commercialize the FED with CNT emitter, some fundamental problems regarding life time and emission efficiency have to be solved. In this study, we investigated the $TiO_2$ coated CNT as a field emitter. $TiO_2$ nanoparticles can coated on CNT surface by chemical solution method. $TiO_2$ nanoparticles had uniform size with the average size of about 2.4 nm to 3.1 nm. Field emission performance of CNT coated with $TiO_2$ nanoparticles was evaluated and discussed.

  • PDF

Field Emission Display and Backlight for LCD using Printed Carbon Nanotubes

  • Kim, Yong-Churl;Jung, D.S.;Song, B.K.;Bae, M.J.;Kang, H.S.;Han, I.T.;Kim, Jong-Min;Choi, Y.C.;Hwang, M.I.;Kim, I.H.;Park, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1045-1048
    • /
    • 2007
  • We mainly report recent progress in backlight unit (BLU) for liquid crystal display (LCD) using printed carbon nanotubes (CNTs) including top-gate and lateral gate structures. Lighting performances of CNTBLU and longevity of printed CNT emitters are intensively discussed. Selected issues related with field emission display (FED) using the same emitters also are presented.

  • PDF

Fabrication of high-performance carbon nanotube field emitter using Thermal Chemical Vapor Deposition

  • Yu, Wan-Jun;Cho, You-suk;Park, Gyuseok;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.43-43
    • /
    • 2003
  • Carbon nanotubes(CNTs) have many application points, which are field emission devices, composites, hydrogen storage, nanodevices, supercapacitor and secondary battery. The most promising application point is emitter tip mays of field emission devices. Furthermore, it may be also useful as a vacuum device for high frequency and high power. But, there are some obstacles to fabricate carbon nanotube field emission device. One is that CNTs grown by CVD method has weak adhesion with substrate and the other is non-uniform length of them. These problems are very crucial in aging property and reliability of device in the field emission.

  • PDF

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

A Novel Sub-Micron Gap Fabrication Technology using Chemical-Mechanical Polishing (CMP) for Lateral Field Emission Device (FED) (측면 전계 방출 소자를 위한 화학적-기계적 연마를 이용한 새로운 미소 간격 제작 기술)

  • Lee, Chun-Seop;Han, Cheol-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.466-470
    • /
    • 2001
  • We have developed a sub-micron gap fabrication technology using chemical-mechanical polishing (CMP) without /the sub-micron lithography equipments (0.18∼0.25 7m). And it has been applied to a lateral field emission device (FED), in which narrow gap distance is very important for reducing turn-on voltage. As a result, the turn-on voltage (at which the current level is 1 nA) of the fabricated device with the gap distance of 256 nm is as low as 4.0 V, which is the lowest turn-on voltage among lateral FEDs ever reported.

  • PDF

Field emission characteristics of CNT-FED using ink-jet printing (잉크젯 프린팅을 이용한 CNT-FED의 전계 방출 특성)

  • Song, Jin-Won;Yoon, Yeo-Hwan;Han, Chang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.426-426
    • /
    • 2007
  • We report the field emission characteristics of transparent single-walled carbon nanotube (SWNT) film printed using an inkjet. Pure SWNTs dispersed in dimethylformamide were printed in a transparent layer on indium-tin oxide-coated glass and annealed at $350^{\circ}C$. After taping treatment, SWNTs were oriented vertically on the substrate. The front and the back of the fabricated device produced simultaneous emissions of identical quality. In addition, inkjet printing directly achieved a patterned emission, without a secondary pattern process. This method allows simple fabrication using only SWNTs, without the use of other additives.

  • PDF

Decrease of Gate Leakage Current by Employing AI Sacrificial Layer in the DLC-coated Si-tip FEA Fabrication (DLC-coated Si-tip FEA 제조에 있어서 Al 희생층을 이용한 게이트 누설 전류의 감소)

  • Ju, Byeong-Kwon;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.577-579
    • /
    • 1999
  • DLC film remaining on device surface could be removed by eliminating AI sacrificial layer as a final step of lift-off process in the fabrication of DLC-coated Si-tip FEA. The field emission properties(I-V curves, hysteresis, and current fluctuation etc.) of the processed device were analyzed and the process was employed to 1.76 inch-sized FEA panel fabrication in order to evaluate its FED applicability.

  • PDF

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.