• Title/Summary/Keyword: fiberboards

Search Result 24, Processing Time 0.021 seconds

Sound Absorption and Physical Properties of Carbonized Fiberboards with Three Different Densities

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.555-562
    • /
    • 2014
  • Characteristics of carbonized fiberboard such as chemical materials absorption, electromagnetic shielding, and electrical and mechanical performance were determined in previous studies. The carbonized board therefore confirmed that having excellent abilities of these characteristics. In this study, the effect of density on physical properties and sound absorption properties of carbonized fiberboards at $800^{\circ}C$ were investigated for the potential use of carbonized fiberboards as a replacement of conventional sound absorbing material. The thickness of fiberboards after carbonization was reduced 49.9%, 40.7%, and 43.3% in low density fiberboard (LDF), medium density fiberboard (MDF), and high density fiberboard (HDF), respectively. Based on SEM images, porosity of carbonized fiberboard increased by carbonization due to removing adhesives. Moreover, carbonization did not destroy structure of wood fiber based on SEM results. Carbonization process influenced contraction of fiberboard. The sound absorption coefficient of carbonized low density fiberboard (c-LDF) was higher than those of carbonized medium density fiberboard (c-MDF) and carbonized high density fiberboard (c-HDF). This result was similar with original fiberboards, which indicated sound absorbing ability was not significantly changed by carbonization compared to that of original fiberboards. Therefore, the sound absorbing coefficient may depend on source, texture, and density of fiberboard rather than carbonization.

Static Cushioning Properties of Corrugated Fiberboard and Creep Behavior of Boxes (골판지의 정적완충특성과 골판지상자의 크리이프 거동)

  • 박종민;김만수;정성원
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-332
    • /
    • 1995
  • The horizontal compression test of some selected corrugated fiberboards was performed to determine the cushioning properties of them. Creep behavior of the corrugated fiberboard boxes, which have been widely used in rural area for packaging fruits and vegetables, was tested. The flute crushing stress of the corrugated fiberboard depended upon mainly the basic weight of the corrugated medium, comparing with the combined basic weight of corrugated fiberboard. When moisture content of the corrugated fiberboards was increased about 8% (d.b.), the flute crushing stress of them was decreased at the rate of 44%~64%. The cushion factor of the sample fiberboards showed much higher value at the lower moisture content of them. These trends appeared to be more obvious at the lower applied stress levels. Also, the cushion factors of the double wall corrugated fiberboards(DW) were observed to be little higher than those of the single wall corrugated fiberboards(SW). The creep behavior of the sample boxes was found to be highly moisture and static load dependent. The creep behavior of the corrugated fiberboard boxes could be well analyzed by the asymptotic slope derived from the creep model.

  • PDF

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure

  • Lee, Myung-Hoon;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was carried out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiberboards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure (종이성형구조물의 휨강성에 대한 실험적 연구)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Manufacture of Crack-free Carbonized Board from Fiberboard (섬유판을 이용한 무할렬 탄화보드 제조)

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young;Lee, Seon-Hwa
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • In manufacturing the crack-free carbonized boards using fiberboards, shrinking ratio, weight loss and density variation of carbonized boards at each carbonization temperature were investigated. Fiberboards with thickness of 3, 4.5, 6, and 18 mm were carbonized while pressed with pressure plates at different temperature from $400^{\circ}C$ to $1,000^{\circ}C$ using a ordinary laboratory furnace. Either of crack or twist was not observed in fiberboards by adapting the pressing carbonization method. The ratios of shrinkage of length, width, and thickness were 10~25%, 12~25%, and 28~48%, respectively, and shrinkage ratio of thickness was higher than those of length and width with increasing the carbonization temperature. Weight loss tended to increase with increasing the carbonization temperature, but low correlation between weight loss in thickness of fiberboards and carbonization temperature was observed. Density of 3 mm carbonized hardboard had the highest value and it tended to increase with increasing the carbonization temperature.

Theoretical and Finite Element Analysis for Structural Strength of Paperboard-stacked Structure (종이성형구조물의 구조적 강도에 대한 이론분석과 유한요소해석)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 1999
  • Not only is it important that the physical properties of the paperboards be appropriate for the intended end use, but the proper arrangement of the component in the built-up board is essential for attaining the optimum moment of inertia and the maximum load-carrying ability in a box. It is known to be impossible to estimate the stress distribution and deflection pattern by experiments or theoretical analysis when the corrugated fiberboard get the bending force. This study was tried theoretical and finite element analysis to analyze structural strength characteristics of corrugated fiberboards. If the linerboard and corrugating medium of every corrugated fiberboards is made from the same material, the location of neutral axis comes close to inside liner in order of DMA, DM, DMB, SW and DW, and moment of inertia of area decreases in order of DMA, DMB, DW, DM and SW. With the finite element analysis, deflection of applied loads represented SW, DM, DMA, and TW in the order of their value.

  • PDF

Characteristics of Low Density Fiberboards for Insulation Material with Different Adhesives (I) - Thermal Insulation Performance and Physical Properties - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(I) - 단열성능 및 물리적 성질 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.360-367
    • /
    • 2017
  • This study was carried out to compare the characteristics of low density fiberboards (LDFs) manufactured with different adhesive types such as melamine urea formaldehyde (MUF), phenol formalehyde (PF), emulsified MDI (eMDI) and latexes resins. As results, hard LDFs were successfully manufactured by MUF, PF and eMDI resins. Thermal conductivities of all LDFs were significantly lower than commercial medium density fiberboard. Especially, all LDFs showed comparable thermal insulation performance with extruded polystyrene foam (XPS). LDF manufactured with eMDI resins showed the highest physical properties such as thickness/length swelling by water absorption and bending strength.

Acoustic Emission Source Location of Fiberboard (섬유판에서 음향방출원의 위치표정)

  • 박익근;김용권;윤종학;노승남;서성원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • 음향방출 신호를 이용하여 목재 섬유판(fiberboards)의 위치표정의 유용성 유무를 실험적으로 검증하였다 위치표정의 정확도를 향상하기 위해 신호처리 방법중의 하나인 웨이블릿 변환 디노이징 기법을 활용하여 저주파수인 대칭모드(굽힘파)를 활용하고, 고주파수인 비대칭모드(팽창파)를 제거하여 신호를 재구성함으로써 섬유관의 위치표정시 문턱값 통과방법을 사용할 때 발생하는 도달시간차를 최소화 할 수 있음을 확인하였다. 디노이징 기법을 활용한 섬유판의 위치 표정과 굽힘강도에 대한 사상총수를 기초로 하여 목재 구조물 및 문화재의 건전성을 평가 할 수 있을 것으로 기대된다.

  • PDF