• Title/Summary/Keyword: fiberboard

Search Result 204, Processing Time 0.023 seconds

Phenol-Formaldehyde (PF) Resin Bonded Medium Density Fiberboard

  • Park, Byung-Dae;Riedl, Bernard;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • This study was conducted to manufacture MDF panels bonded with PF resins which provide excellent durability and dimensional stability with panels, and to identify benefits and weaknesses of using PF resins for MDF panels that have been manufactured with urea-formaldehyde (UF) resins for interior applications due to its low dimensional stability under moisture conditions. The results showed that the performance of PF-bonded MDF panels satisfied the performance requirement. A six-cycle aging test also revealed that PF-bonded MDF panels had high durability. Thickness swelling after 24 hours submersion in cold water was less than 2 percent, showing good dimentioanl stability. The identified weaknesses of using PF resins were relatively high resin content and long hot-pressing time. An acceptable resin content appeared to be 8 percent which can increase the production cost of PF-bonded MDF panels. The hot-pressing time (7 minutes) used in this study is relatively long compared to that of UF-bonded MDF panels. This result also indicates that hot-pressing process has to be optimized to control various pressing variables.

  • PDF

Formaldehyde Emission of Wood-Based Composite Panels with Different Surface Lamination Materials Using Desiccator Method

  • Park, Byung-Dae;Kang, Eun Chang;Lee, Sang-Min;Park, Jong Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.600-606
    • /
    • 2016
  • Wood-based composite panels such as plywood, particleboard (PB), or medium density fiberboard (MDF) are mostly used in the lamination on their surface for the manufacturing of furniture, or interior building products, the concern on the formaldehyde emission (FE) from the surface laminated wood panels is increasingly attracting attentions from the public. Thus, this study was conducted to understand influence of surface laminating materials to the FE from PB and MDF with or without edge sealing, using 24-hour desiccator method. Both PB samples that had been laminated on their surface with low-pressure laminate (LPL) or polypropylene (PP) film and MDF that had been treated with poly(vinyl chloride) (PVC) or coating were tested for the FE with or without edge sealing. As expected, the FE of PB with the sealed edges decreased to 37.4% and 80.7% with the LPL and PP lamination, respectively. The surface laminated MDF with the sealed edges also showed a decrease in the emission up to 57.8% and 54.3%, with the PVC lamination and coating, respectively. However, the coated MDF samples showed 5.3% increase in the emission when their edges were not sealed, indicating a FE form the solvent used for coating. These results showed that the type of surface lamination materials on wood-based composite panels has a great impact on their resultant FE, indicating that the influence of surface laminating materials should be taken into consideration for the formaldehyde mission measurement.

Evaluation in Physiomechanical Characteristics of Carbonized Oriented Strand Board by Different Carbonizing Conditions

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Environmental issues about indoor air quality have been increased and focused on volatile organic compounds (VOCs) caused cancer, asthma, and skin disease. Reducing VOCs has been attempted in many different methods such as using environmentally friendly materials and air cleaner or purifier. Charcoal is well known material for absorbing VOCs. Therefore, carbonized board from medium density fiberboard has been developed. We assumed that the source of carbonized boards can be any type of wood-based panels. In this study, carbonized boards were manufactured from oriented strand board (OSB) at 400, 600, 800, and $1000^{\circ}C$. Each carbonized OSB (c-OSB) was evaluated and determined physiomechanical characteristics such as exterior defects, dimensional shrinkage, modulus of elasticity, and bending strength. No external defects were observed on c-OSBs at all carbonizing conditions. As carbonizing temperature increased, less porosity between carbonized wood fibers was observed by SEM analysis. The higher rate of dimensional shrinkage was observed on c-OSB at $1000^{\circ}C$ (66%) than c-OSB at 400, 600, and $800^{\circ}C$ (47%, 58%, and 63%, respectively). The densities of c-OSBs were lower than original OSB, but there was no significant different among the c-OSBs. The bending strength of c-OSB increased 1.58 MPa (c-OSB at $400^{\circ}C$) to 8.03 MPa (c-OSB at $1000^{\circ}C$) as carbonization temperature increased. Carbonization temperature above $800^{\circ}C$ yielded higher bonding strength than that of gypsum board (4.6 MPa). In conclusion, c-OSB may be used in sealing and wall for decorating purpose without additional artwork compare to c-MDF which has smooth surface.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

Measuring Method of Formaldehyde Emission for Plywood (합판의 포름알데히드방산량 측정방법)

  • Lee, Sang-Min;Park, Jong-Young;Kang, Eun-Chang;Kim, Su-Woun;Han, Seung-Tak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Unlike other composites boards such as fiberboard and particleboard, plywood is manufactured with sheets of veneers. When the plywood manufactured, the adhesive is spreaded through gluelines on each surface of veneers. For that reason, formaldehyde emission of plywood can be considered as different way. Therefore, this research was conducted to understand the formaldehyde emission pattern of plywood. To measure formaldehyde emission, four different specimen preparing methods were used. The test specimen taken by a total surface area, a given number and a total side area showed inconsistent results. On the other hand, the result of formaldehyde emission showed consistency when considered only the length of adhesive layers.

Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types (구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

A Study on the Flame Retardant Performance of MDF Wood According to Flame Retardant Treatment Method (방염처리 방법에 따른 MDF 목재의 방염성능에 관한 연구)

  • Cha, Jung-Min;Hyun, Seong-Ho;Kim, In-Beom;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.146-155
    • /
    • 2011
  • In the study, test was carried out to compare the flame retardant performance for the specimen of MDF wood to which field flame retardant treatment (post processing flame retardant) is applied, which is coated with flame retardant film of 5 companies, locally distributed, and MDF wood (nontreated, flame retardant film non-coated) to which aqueous or oil-based fire-retardant paint is applied. As a result of combustion test of MDF wood which was coated with flame retardant film of 5 companies, 2 products showed suitable values in 4 criteria, but other 3 products showed 10~40 % disqualification rate. In regard of characteristics of fire-retardant paint, oil-based fire-retardant paint is better than aqueous fire-retardant paint in flame retardant performance criteria, but MDF wood to which oilbase fire-retardant paint was applied was shown to have higher toxicity index grade than MDF wood to which aqueous fire-retardant paint was applied relatively.

Analysis of Fire Characteristics based on the Thickness and Incident Heat Flux of Wood (합판류 목재의 두께별 입사열유속에 따른 연소특성 비교 연구)

  • Hwang, Sun-Woo;Park, Won-Hee;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.13-21
    • /
    • 2020
  • This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/㎡ were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.

Bioethanol Production by using Wasted MDF (폐압축보드를 이용한 바이오에탄올 생산)

  • Kang, Yang-Rae;Hwang, Jin-Sik;Bae, Ki-Han;Cho, Hoon-Ho;Lee, Eun-Jeong;Cho, Young-Son;Nam, Ki-Du
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • The aim of this study attempted to verify the possibility of bioethanol production using wasted medium density fiberboard (wMDF). In order to produce bioethanol from wood cellulosic materials must be carried out the process of pretreatment, saccharification, fermentation and distillation. First, the wMDF was pretreated using sodium chlorite and pretreated wMDF was prepared to 8% slurry and then slurry was saccharified with the commercial enzyme (Cellic CTec3). The fermentable sugar and pH of saccharified substrate were about 5.5% glucose and 4.4, respectively. Herein we compared the results of ethanol yield according to the nutrients added or without addition to increase ethanol yield. Ethanol fermentation was finished in about 24 hours, but it was delayed in experimental group without nutrients. Ethanol content and fermentation ratio of the final fermented mash prepared by utilizing jar fermenter was 25.40 g/L and 86.64%, respectively. At this time, the maximum ethanol productivity was confirmed as 1.78 g/Lh (ethanol content 21.38 g/L, 12 h), and the overall ethanol productivity was 1.05 g/Lh (ethanol content 25.27 g/L, 24 h). Using fermented liquid we could produced bioethanol 95.37% by continuous distillator packed with copper element in laboratory scale. These results show that wMDF has a potential valuable for bioethanol production.

Application of spacers for increasing OCC solid content in wet pressing process (I) (스페이서 사용에 의한 OCC 압착공정의 고형분 증대 (I))

  • Hwang, In-Young;Lee, Young-Ho;Jung, Jae-Gwon;Sung, Yong-Joo;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The increase of OCC solid content after wet pressing will save drying energy greatly. We applied spacers, which used to increase draining rate and bulk in fiber furnishes, to increase the OCC solid contents. MDF fibers (fibers for making medium density fiberboard) and diatomaceous earth were used as spacers, and added 10% by weight to the OCC fiber furnish. Application of high wet pressing pressure to the mixed furnish of spacers and refined OCC did not deteriorate bulk and drainage rate, but their solid contents were increased to 0.5-1.5% without loss of compressive strength when compared to those of unrefined OCC, which is the furnish normally used for mill commercial practice. It is believed that the spacers caused the rate of solid content increase faster in the mixed furnish with OCC at high wet pressing pressure area than the unrefined OCC furnish did. Little amount of starch addition (0.5%) to the spacers helped to keep the strength properties.