• 제목/요약/키워드: fiber technique

검색결과 1,113건 처리시간 0.025초

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • 제9권2호
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

Synthesis, characterization, and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers

  • Pant, Bishweshwar;Park, Mira;Jang, Rae-Sang;Choi, Woo-Cheol;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.17-21
    • /
    • 2017
  • Polyurethane (PU) nanofibers containing graphene oxide (GO) and Ag doped functionalized reduced graphene oxide (Ag-RGO) were successfully prepared via the electrospinning technique. The uniform distribution of GO sheets along with Ag nanoparticle in the nanofibers was investigated by scanning electron microscopy and the elemental mapping technique. X-ray diffraction and thermal gravimetric analysis verified the presence of GO and Ag in the bicomposite nanofibrous mats. Antibacterial tests against Escherichia coli demonstrated that the addition of GO and Ag-RGO to the PU nanofiber greatly enhanced bactericidal efficiency. Overall, these features of the synthesized nanofibers make them a promising candidate material in the biomedical field for applications such as tissue engineering, wound healing, and drug delivery systems.

광강도형 광섬유 센서를 이용한 복합재 적충판의 피로손상 감시 (Monitoring of Fatigue Damage of Composite Laminates Using Embedded Intensity-Based Optical Fiber Sensors)

  • 이동춘;이정주;서대철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.124-127
    • /
    • 2000
  • In this study, a technique for monitoring of fatigue damage of composite laminates by measuring the stiffness change using embedded intensity-based optical fiber sensors was investigated. Firstly, the underlying measurement principle and structure of intensity-based sensors and then a simple stiffness conversion process was explained. The monitoring technique was evaluated by fatigue tests of composite laminates with an embedded intensity-based sensor. From the test results, the response of the intensity-based sensor showed good correlation with that of surface mounted extensometer. Therefore, it can be concluded that the intensity-based sensors have good potential for the monitoring of fatigue damage of composite structures under fatigue loading. In addition, it could be confirmed that the intensity-based sensors have higher resistance to fatigue than the commercial electrical strain gauge.

  • PDF

Reattachment of a fractured fragment with relined fiber post using indirect technique - a case report

  • Kim, Eun-Soo;Min, Kyung-San;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • 제39권4호
    • /
    • pp.324-328
    • /
    • 2014
  • Although fiber-reinforced posts have been widely used, they sometimes fail to obtain sufficient retention because of an extremely large canal space. To address this, several techniques have been introduced including relining of the fiber-reinforced posts. Here, we used a relined glass-fiber post to increase retention and fitness to the root canal in a crown reattachment case. The relining procedure was performed by using an indirect method on the working cast. This case also highlights the esthetic concerns regarding dehydration of the attached crown fragment.

확장유한요소법과 멀티스케일 기법을 통한 팔라듐 첨가 탄소섬유/알루미늄 적층구조에 대한 수치해석 (Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique)

  • 박우림;권오헌
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.7-14
    • /
    • 2019
  • A palladium can adsorb hydrogen and detect leaking hydrogen through changes in color and electrical resistance. This study is to evaluate the structural behavior of carbon fiber adding palladium composite materials used in the hydrogen storage vessel. A multi-scale analysis technique was used to analyze accurately the behavior of each material in relation to the microscopic composition. The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. Also the crack evaluation was performed by XFEM analysis to confirm the reinforcement performance of aluminum as a liner of the hydrogen vessel. The results show that the addition of the palladium material increased the macroscopic stress, but microscopically the carbon fiber stress was reduced. It means the performance improvement of the palladium added carbon fiber/Al composite.

Effect of magnetic field and gravity on thermoelastic fiber-reinforced with memory-dependent derivative

  • Mohamed I.A. Othman;Samia M. Said;Elsayed M. Abd-Elaziz
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.101-118
    • /
    • 2023
  • The purpose of this paper is to study the effects of magnetic field and gravitational field on fiber-reinforced thermoelastic medium with memory-dependent derivative. Three-phase-lag model of thermoelasticity (3PHL) is used to study the plane waves in a fiber-reinforced magneto-thermoelastic material with memory-dependent derivative. A gravitating magneto-thermoelastic two-dimensional substrate is influenced by both thermal shock and mechanical loads at the free surface. Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique with the eigenvalue approach technique. A numerical example is considered to illustrate graphically the effects of the magnetic field, gravitational field and two types of mechanical loads(continuous load and impact load).

Spatial Resolution Enhancement with Fiber - based Spectral Filtering for Optical Coherence Tomography

  • Choi, Eun-Seo;Na, Ji-Hoon;Lee, Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제7권4호
    • /
    • pp.216-223
    • /
    • 2003
  • We report a technique that improves the spatial resolution of optical coherence tomography (OCT) by utilizing fiber-based spectral filtering. The proposed technique improves the resolution by filtering out the erbium’s characteristic peak from the amplified spontaneous emission (ASE) source spectrum, and reshaping the spectrum to Gaussian-like. We used a long period fiber grating (LPG) and an erbium doped fiber (EDF) absorber for the spectral filtering. An in-house made ASE source as well as a commercial ASE source [ASE-FL7002] was used as the OCT sources to study the proposed technique. The resolution of the OCT based on an in-house made ASE source is enhanced from 200 to 40 ㎛ with an LPG. While, the resolution of the OCT based on a commercial ASE source is enhanced from 25 to 19 ㎛ with the aid of an EDF absorber. However, sidelobes still exist in the interferogram due to imperfect spectral filtering, which limited the resolution. Further enhancement in the spatial resolution of the OCT system using the ASE source is possible with the aid of cascaded LPGs and/or carefully designed EDF absorber.

섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향 (Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete)

  • 강수태;김윤용;이방연;김진근
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.731-739
    • /
    • 2008
  • 이 연구에서는 강섬유 보강 초고강도 콘크리트의 타설방법에 따라 섬유의 방향성이 인장강도에 미치는 영향을 파악하고자 섬유의 방향성을 정량적으로 평가할 수 있는 이미지 프로세싱 기법을 개발하였으며, 개발한 기법을 적용하여 섬유의 방향성을 평가하였다. 또한 휨인장실험을 수행하여 섬유의 방향성이 균열발생강도 및 휨인장강도에 미치는 영향을 파악하였다. 이 연구에서 개발한 이미지 프로세싱 기법은 섬유 방향성 이외에 분산성 계수, 단위면적당 섬유의 개수 등, 분포 특성을 정량적으로 평가하고 있으며, 타설방법에 따라 섬유 분포 특성에 상당한 차이가 있음을 확인할 수 있었다. 그리고 섬유의 방향 분포특성은 강섬유 보강 초고강도 콘크리트의 균열발생강도에는 크게 영향을 미치지 않으나, 휨인장강도에 미치는 영향은 아주 큰 것으로 나타났으며, 이론적인 휨강도 모델식에 실제 섬유 방향성을 적용하여 예측한 결과, 실험 결과와 잘 일치하는 것으로 나타났다.

시간지연 샘플링을 이용한 광섬유 격자 센서어레이의 선형 복조 (Linear interrogation of fiber Bragg grating sensor array using time-delayed quadrature sampling technique)

  • 김종섭;송민호
    • 한국광학회지
    • /
    • 제15권1호
    • /
    • pp.34-38
    • /
    • 2004
  • 파장가변형 광섬유레이저로 광섬유격자 센서어레이를 복조하는 방법을 제안하였다. 레이저의 출력파장을 시간지연 샘플링으로 분석하고 이를 이용하여 기존 시스템의 비선형적 동작특성을 개선하였다. 계산된 파장값은 센서어레이 출력파평의 각 피크에 할당되어 파장가변필터의 비선형성에 영향받지 않고 가해진 물리량에 대하여 항상 선형적인 출력을 얻게 하였다. 실험을 통하여 약 20 pm의 분해능을 얻었으며 이는 고속의 위상변조를 사용할 경우 크게 개선될 수 있음을 보였다.

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.