DOI QR코드

DOI QR Code

Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete

섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향

  • Kang, Su-Tae (Korea Institute of Construction Technology) ;
  • Kim, Yun-Yong (Dept. of Civil Engineering, Chungnam National University) ;
  • Lee, Bang-Yun (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Keun (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 강수태 (한국건설기술연구원 구조연구부) ;
  • 김윤용 (충남대학교 토목공학과) ;
  • 이방연 (한국과학기술원 건설 및 환경공학과) ;
  • 김진근 (한국과학기술원 건설 및 환경공학과)
  • Published : 2008.12.31

Abstract

To evaluate the fiber orientation characteristics and estimate its effect on the flexural strength of steel fiber reinforced ultra high strength concrete with directions of concrete placing, we developed an image processing technique and carried out the flexural test to quantify the effect of fiber orientation characteristics on the flexural strength as well. The image processing technique developed in this study could evaluate quantitatively the fiber orientation property by the use of dispersion coefficient, the number of fibers in a unit area, and fiber orientation. It was also found that the fiber orientation characteristics were dependent on the direction of concrete placing. Fiber orientation characteristic was revealed to strongly affect the ultimate flexural strength, while hardly affecting the first cracking strength. Theoretical model for flexural strength was applied to compare with test results, which exhibited a good agreement.

이 연구에서는 강섬유 보강 초고강도 콘크리트의 타설방법에 따라 섬유의 방향성이 인장강도에 미치는 영향을 파악하고자 섬유의 방향성을 정량적으로 평가할 수 있는 이미지 프로세싱 기법을 개발하였으며, 개발한 기법을 적용하여 섬유의 방향성을 평가하였다. 또한 휨인장실험을 수행하여 섬유의 방향성이 균열발생강도 및 휨인장강도에 미치는 영향을 파악하였다. 이 연구에서 개발한 이미지 프로세싱 기법은 섬유 방향성 이외에 분산성 계수, 단위면적당 섬유의 개수 등, 분포 특성을 정량적으로 평가하고 있으며, 타설방법에 따라 섬유 분포 특성에 상당한 차이가 있음을 확인할 수 있었다. 그리고 섬유의 방향 분포특성은 강섬유 보강 초고강도 콘크리트의 균열발생강도에는 크게 영향을 미치지 않으나, 휨인장강도에 미치는 영향은 아주 큰 것으로 나타났으며, 이론적인 휨강도 모델식에 실제 섬유 방향성을 적용하여 예측한 결과, 실험 결과와 잘 일치하는 것으로 나타났다.

Keywords

References

  1. Richard, P. and Cheyrezy, M., 'Composition of Reactive Powder Concrete,' Cement and Concrete Research, Vol. 25, No. 7, 1995, pp. 1501-1511 https://doi.org/10.1016/0008-8846(95)00144-2
  2. Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J., and Aitcin, P. C., 'Mechanical Properties and Durability of Two Industrial Reactive Powder Concretes,' ACI Materials Journal, Vol. 94, No. 4, 1997, pp. 286-290
  3. Shah, S. P., 'Do Fibers Increase the Tensile Strength of Cement-based Matrixes?,' ACI Materials Journal, Vol. 88, No. 6, 1991, pp. 595-602
  4. Banthia, N., Bindiganavile, V., and Mindess, S., 'Impact Resistance of Fiber Reinforced Concrete,' Proceeding of RILEM 4th International Workshop on High Performance Fiber Reinforced Cement Composites(HPFRCC4), Ann Arbor, USA, 2003, pp. 117-131
  5. Shah, S. P., Sarigaphuti, M., and Karguler, M. E., 'Comparison of Shrinkage Cracking Performance of Different Types of Fibers and Wiremesh,' Fiber Reinforced Concrete Developments and Innovations, Michigan, American Concrete Institute, 1994, pp. 1-18
  6. Vaxman, A. and Narkis, M., 'Short-Fiber-Reinforced Thermoplastics: III. Effect of Fiber Length on Rheological Properties and Fiber Orientation,' Polymer Composites, Vol. 10, 1989, pp. 454-461 https://doi.org/10.1002/pc.750100610
  7. Cox, H. L., 'The Elasticity and Strength of Paper and Other Fibrous Materials,' British Journal of Applied Physics, Vol. 3, 1952, 72 pp. https://doi.org/10.1088/0508-3443/3/3/302
  8. Kim, E. G., Park, J. K., and Jo, S. H., 'A Study of Fiber Orientation during the Injection Molding of Fiber-Reinforced Polymeric Composites (Comparison between Image Processing Results and Numerical Simulation),' Journal of Material Processing Technology, Vol. 111, 2001, pp. 225-232 https://doi.org/10.1016/S0924-0136(01)00521-0
  9. Han, K. H. and Im, Y. T., 'Numerical Simulation of Threedimensional Fiber Orientation in Short-Riber-Reinforced Injection- Molded Parts,' Journal of Material Processing Technology, Vol. 124, 2002, pp. 366-371 https://doi.org/10.1016/S0924-0136(02)00255-8
  10. Poitou, A., Chinesta, F., and Bernier, G., 'Orientating Fibers by Extrusion in Reinforced Reactive Powder Concrete,' Journal of Engineering Mechanics, Vol. 127, No. 6, 2001, pp. 593-598 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(593)
  11. Bentur, A., 'Fiber-reinforced Cementitious Materials,' Materials Science of Concrete, The American Ceramic Society, 1989, pp. 225-285
  12. Mobasher, B., Stang, H., and Shah, S. P., 'Microcracking in Fiber Reinforced Concrete,' Cement and Concrete Research, Vol. 20, 1990, pp. 665-676 https://doi.org/10.1016/0008-8846(90)90001-E
  13. Piggott, M. R., 'Short Fiber Polymer Composites: A Fracture- based Theory of Fibre Reinforcement,' Journal of Composite Materials, Vol. 28, No. 7, 1994, pp. 588-606 https://doi.org/10.1177/002199839402800701
  14. Chiang, C. R., 'A Statistical Theory of the Tensile Strength of Short Fiber-reinforced Composites,' Composites Science and Technology, Vol. 50, No. 4, 1994, pp. 479-482 https://doi.org/10.1016/0266-3538(94)90056-6
  15. Xia, M. Hamada, H., and Maekawa, Z., 'Flexural Stiffness of Injection Molded Glass Fiber Reinforced Thermoplastics,' International Polymer Processing, Vol. 10, No. 1, 1995, pp. 74-81 https://doi.org/10.3139/217.950074
  16. Aveston, J., Mercer, R. A., and Sillwood, J. M., 'Fiber Reinforced Cements-scientific Foundations for Specifications, In Composites-standards, Testing and Design,' Proceedings of National Physical Laboratory Conference, UK, 1974, pp. 93-103
  17. Laws, V., 'The Efficiency of Fibrous Reinforcement of Brittle Matrices,' Journal of Physics D, Applied Physics, Vol. 4, 1971, pp. 1737-1746 https://doi.org/10.1088/0022-3727/4/11/318
  18. Allen, H. G., 'The Strength of Thin Composites of Finite Width, with Brittle Matrices and Random Discontinous Reinforcing Fibres,' Journal of Physics D, Applied Physics, Vol. 5, 1972, pp. 331-343 https://doi.org/10.1088/0022-3727/5/2/316
  19. Guild, F. J. and Summerscales, J., 'Microstructural Image Analysis Applied to Fibre Composites Materials: A Review,' Composites, Vol. 24, No. 5, 1993, pp. 383-393 https://doi.org/10.1016/0010-4361(93)90246-5
  20. Yang, Y., 'Methods Study on Dispersion of Fibers in CFRC,' Cement and Concrete Research, Vol. 32, 2002, pp. 747-750 https://doi.org/10.1016/S0008-8846(01)00759-1
  21. Chermant, J. L., Chermant, L., Coster, M., Dequiedt, A. S., and Redon, C., 'Some Fields of Applications of Automatic Image Analysis in Civil Engineering,' Cement and Concrete Composites, Vol. 23, 2001, pp. 157-169 https://doi.org/10.1016/S0958-9465(00)00059-7
  22. Benson, S. D. P. and Karihaloo, B. L., 'CARDIFRCManufacture and Constitutive Behavior,' High Performance Fiber Reinforced Cement Composites (HPFRCC4), Ann Arbor, Mich. 2003, pp.65-79
  23. Akkaya, Y., Shah, S. P., and Ankenman, B., 'Effect of Fiber Dispersion on Multiple Cracking of Cement Composites,' Journal of Engineering Materials in Civil Engineering, Vol. 127, No. 4, 2001, pp. 311-316
  24. Ozyurt, N., Woo, L. Y., Mason, T. O., and Shah, S. P., 'Monitoring Fiber Dispersion in Fiber-Reinforced Cementitious Materials: Comparison of AC- Impedance Spectroscopy and Image Analysis,' ACI Materials Journal, Vol. 103, No. 5, 2006, pp. 340-347
  25. Otsu, N. A., 'Threshold Selection Method from Gray Level Histogram,' IEEE Transactions on Systems,Man, and Cybernetics, Vol. SMC-9, No. 1, 1979, pp. 62-66
  26. 김윤용, 이방연, 김정수, 김진근, '이미지 프로세싱 기법을 이용한 섬유복합재료의 정량적인 섬유분산성 평가,' 비파괴검사학회지, Vol. 27, No. 2, 2007, pp. 148-156
  27. Swamy, R. N,, Magnet, P. S., and Rao, C. V. S. K., 'The Mechanics of Fiber Reinforcement of Cement Matrices,' An International Symposium: Fiber Reinforced Concrete, American Concrete Institute, Detroit, 1974, pp. 1-28
  28. 강수태, 박정준, 류금성, 고경택, 김성욱, 'UHPC의 직접인 장응력과 균열개구변위와의 관계에 관한 실험적 연구,' 한국콘크리트학회 봄학술발표회 논문집, 20권, 1호, 2008, pp. 433-436

Cited by

  1. Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs vol.28, pp.1, 2016, https://doi.org/10.4334/JKCI.2016.28.1.067
  2. Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.177
  3. An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.777
  4. Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending vol.26, pp.6, 2014, https://doi.org/10.4334/JKCI.2014.26.6.771