DOI QR코드

DOI QR Code

Synthesis, characterization, and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers

  • Pant, Bishweshwar (Department of Chemistry, Inha University) ;
  • Park, Mira (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Jang, Rae-Sang (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Choi, Woo-Cheol (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2016.09.13
  • Accepted : 2017.05.18
  • Published : 2017.07.31

Abstract

Polyurethane (PU) nanofibers containing graphene oxide (GO) and Ag doped functionalized reduced graphene oxide (Ag-RGO) were successfully prepared via the electrospinning technique. The uniform distribution of GO sheets along with Ag nanoparticle in the nanofibers was investigated by scanning electron microscopy and the elemental mapping technique. X-ray diffraction and thermal gravimetric analysis verified the presence of GO and Ag in the bicomposite nanofibrous mats. Antibacterial tests against Escherichia coli demonstrated that the addition of GO and Ag-RGO to the PU nanofiber greatly enhanced bactericidal efficiency. Overall, these features of the synthesized nanofibers make them a promising candidate material in the biomedical field for applications such as tissue engineering, wound healing, and drug delivery systems.

Keywords

References

  1. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials, 29, 2907 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.034.
  2. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261 (2001). https://doi.org/10.1016/S0032- 3861(00)00250-0.
  3. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 63, 2223 (2003). https:// doi.org/10.1016/S0266-3538(03)00178-7.
  4. Damodar RA, You SJ, Chou HH. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater, 172, 1321 (2009). https://doi. org/10.1016/j.jhazmat.2009.07.139.
  5. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater, 185, 124 (2011). https://doi. org/10.1016/j.jhazmat.2010.09.006.
  6. Yang F, Both SK, Yang X, Walboomers XF, Jansen JA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater, 5, 3295 (2009). https://doi. org/10.1016/j.actbio.2009.05.023.
  7. Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Delivery Rev, 61, 1033 (2009). https://doi.org/10.1016/j. addr.2009.07.007.
  8. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC. Intrinsic response of graphene vapor sensors. Nano Lett, 9, 1472 (2009). https://doi. org/10.1021/nl8033637.
  9. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). https://doi.org/10.1016/j. ssc.2008.02.024.
  10. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). https://doi.org/10.1021/nl0731872.
  11. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). https:// doi.org/10.1021/cm0630800.
  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). https://doi. org/10.1038/nature04969.
  13. Pant B, Pokharel P, Tiwari AP, Saud PS, Park M, Ghouri ZK, Choi S, Park SJ, Kim HY. Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites. Ceram Int, 41, 5656 (2015). https://doi.org/10.1016/j.ceramint. 2014.12.150.
  14. Pokharel P, Pant B, Pokhrel K, Pant HR, Lim JG, Lee DS, Kim HY, Choi S. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Composites Part B, 78, 192 (2015). https://doi. org/10.1016/j.compositesb.2015.03.089.
  15. Pant B, Saud PS, Park M, Park SJ, Kim HY. General one-pot strategy to prepare Ag-$TiO_2$ decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J Alloys Compd, 671, 51 (2016). https://doi.org/10.1016/j.jallcom.2016.02.067.
  16. Pant HR, Park CH, Tijing LD, Amarjargal A, Lee DH, Kim CS. Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids Surf A, 407, 121 (2012). https://doi.org/10.1016/j.colsurfa.2012.05.018.
  17. Pant B, Pant HR, Pandeya DR, Panthi G, Nam KT, Hong ST, Kim CS, Kim HY. Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Colloids Surf A, 395, 94 (2012). https://doi. org/10.1016/j.colsurfa.2011.12.011.
  18. Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K. Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials, 21, 393 (2000). https://doi. org/10.1016/S0142-9612(99)00201-X.
  19. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.
  20. Yousef A, Barakat NAM, Al-Deyab SS, Nirmala R, Pant B, Kim HY. Encapsulation of CdO/ZnO NPs in PU electrospun nanofibers as novel strategy for effective immobilization of the photocatalysts. Colloids Surf A, 401, 8 (2012). https://doi.org/10.1016/j.colsurfa. 2012.02.033.
  21. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 275, 177 (2004). https://doi. org/10.1016/j.jcis.2004.02.012.
  22. Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol, 71, 7589 (2005). https://doi.org/10.1128/ AEM.71.11.7589-7593.2005.