• Title/Summary/Keyword: fiber sensor

Search Result 1,227, Processing Time 0.026 seconds

Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves

  • Fasel, T.R.;Kennel, M.B.;Todd, M.D.;Clayton, E.H.;Park, G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.329-344
    • /
    • 2009
  • Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations.

Strain monitoring of the rail during train loading condition using optical fiber sensor (광섬유센서를 이용한 열차하중 작용시 레일의 변형을 모니터링)

  • Yoon, Hyuk-Jin;Song, Kwang-Yong;Kim, Dae-Sang;Kim, Ki-Hwan;Kim, Jung-Seok;Kwon, Tae-Soo;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1514-1518
    • /
    • 2009
  • Recently, railroad construction has been increased all over the world and as the train is getting high-speeded, there has been a need for guaranteed safety, so that a requirement for heath monitoring techniques for destruction that generated by gradually accumulated damages is now increasing. Especially the rail is crucial part that contact with wheel directly and delivers the train's load to a sleeper. It needs a technique that can guarantee a safety by sensing the possible cracks. In this paper, when train's load applied to the rail, strain distribution that introduced to entire length of rail is monitored using optical fibre. Optical fibre is used as a medium for measuring the strain and BOCDA (Brillouin Optical Correlation Domain Analysis) system is organized for measuring the distributed variation that implied to optical fibre. Optical fibre is attached at lower flange where tension is maximized when the load of train applied to the rail and strain gauge is implied together to compare the accuracy of measurement.

  • PDF

A Possible Application of the PD Detection Technique Using Electro-Optic Pockels Cell With Nonlinear Characteristic Analysis on the PD signals

  • Kang, Won-Jong;Lim, Yun-Sok;Chang, Young-Moo;Koo, Ja-Yoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.6-11
    • /
    • 2001
  • Abstract- In this paper, a new Partial Discharge (PD) detection using Pockels cell was proposed and considerable apparent chaotic characteristics were discussed. For this purpose, PD was generated from needle-plane electrode in air and detecte by optical measuring system using Pockels cell, based on Mach-Zehner interferometer, consisting of He-Ne laser, single mode optical fiber, 50/50 beam splitter and photo detector. In addition, the presence of chaos of the PD signals has been investigated by examining their means of qualitative and quantitative information. For the former, return map and 3-dimensional strange attractor have been drawn in order to investigate the presence of chaotic characteristics relevant to PD signals, detected through CT and Peckels sensor respectively, in the normalized time series. The presence of strange attractor indicates the existence of fractal structures in it's phase space. For the latter, several dimension values of strange attractor were verified sequentially. Throughout this paper, it is likely that the chaotic characteristics regarding the PD signals under air are verified.

Wound-State Monitoring for Burn Patients Using E-Nose/SPME System

  • Byun, Hyung-Gi;Persaud, Krishna C.;Pisanelli, Anna Maria
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.440-446
    • /
    • 2010
  • Array-based gas sensors now offer the potential of a robust analytical approach to odor measurement for medical use. We are developing a fast reliable method for detection of microbial infection by monitoring the headspace from the infected wound. In this paper, we present initial results obtained from wound-state monitoring for burn patients using an electronic nose incorporating an automated solid-phase microextraction (SPME) desorption system to enable the system to be used for clinical validation. SPME preconcentration is used for sampling of the headspace air and the response of the sensor module to variable concentrations of volatiles emitted from SPME fiber is evaluated. Gas chromatography-mass spectrometry studies prove that living bacteria, the typical infectious agents in clinical practice, can be distinguished from each other by means of a limited set of key volatile products. Principal component analysis results give the first indication that infected patients may be distinguished from uninfected patients. Microbial laboratory analysis using clinical samples verifies the performance of the system.

A Study on the Overheat Inspecting System for Power Transformer using Fiber Bragg Grating Temperature Sensor (FBG 온도센서를 이용한 전력용 변압기 파열감시 시스템 연구)

  • Kim, Woo-Jin;Park, Hyoung-Jun;Song, Min-Ho;Lee, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.169-170
    • /
    • 2006
  • 대형화, 고압화되고 있는 전력설비는 사고가 발생할 경우 그에 수반되는 산업, 경제, 사회적인 손실의 규모가 매우 커지는 경향을 가진다. 특히 적정온도 이상에서의 운전은 전력설비의 오동작을 일으키는 주요한 원인 중 하나이므로 비정상적인 온도상승을 조기에 감지하여 사고의 가능성을 감소시키는 시스템의 개발은 안정적인 전력설비 운용에 반드시 필요한 요소기술이다. 기존의 감시 시스템은 대부분 여러 위치의 정보를 동시에 얻기 위하여 여러 개의 개별 센서를 배열하여야하므로 대형중량화가 불가피하다는 단점을 갖고 있다. 그러나 광섬유 FBG 온도센서는 전자기 간섭의 영향을 받지 않고, 여러 개의 센서를 하나의 광섬유 라인에 설치하여 동시에 여러 부위의 온도를 측정할 수 있는 준분배형 온도센서 구현이 가능하다는 장점으로 과열감시 시스템에 적합한 센서로 인식된다. 본 연구에서는 광섬유 FBG 온도센서를 이용하여 변압기 단락시험을 통해 변압기의 온도 변화를 T-type thermocouple(이하 TC)과 동일한 지점에서 측정하고, 그 데이터를 비교분석함으로써 광섬유 FBG 온도센서 시스템의 신뢰성을 검증하였고, 이를 전력용 변압기 과열감시 시스템으로 적용할 수 있음을 제시하였다.

  • PDF

Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers (폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성)

  • Jang, Hoyoung;Lee, Hyeon-Jong;Suk, Ji Won
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.50-54
    • /
    • 2020
  • Soft robotics and wearable devices require large motions and flexibility. In this regard, there is a demand for developing stretchable strain sensors which can be attached to the soft robots and wearable devices. In this work, we fabricated stretchable and electrically conductive composite fibers by combining polyurethane (PU) and silver nanoflowers (AgNFs). The PU/AgNF composite fibers showed the change of the resistance as a function of the applied strain, demonstrating the potential for stretchable strain sensors in soft robotics and wearable devices. The mechanical and electrical characteristics of the composite fibers were measured and analyzed to use the composite fibers for stretchable strain sensors.

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

Comparative Analysis of Dynamic Moisture Movement Testers

  • Lee, Duck-Weon;Shim, Woo-Sub;Lim, Ho-Sun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.40-55
    • /
    • 2011
  • The purpose of this research is to review testing principle, testing design and experimental results of the four dynamic moisture movement testers. The research analyzes Moisture Manager Tester (MMT), Alambeta Instrument, Dynamic Surface Moisture Movement Tester, and Gravimetric Absorbent Testing Method based on American Society for Testing and Material (ASTM) E 96 which is an international standard testing method. Although many of researches use ASTM E 96 to measure moisture movement on a fabric, it has several weaknesses, such as long experimental time and a physical change of sample by a holder of the frame. Hence, lots of researchers have studied and developed the new measurement systems measuring moisture management on a fabric or garment and ultimately mimic heat energy and perspiration created by the human body. These moisture management systems use a variety of parameters, such as electricity, color, and sensor to measure their movement in the fabric. Through comparison with the existing tester (ASTM E 96), the research recognizes the strength and weakness in the dynamic moisture movement testers.

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Implementation of stimulated Brillouin scattering in Optical Fiber Sensor by using Neuro-Fuzzy Theory (뉴로-퍼지 알고리즘을 적용한 광파이버 유도 브릴루앙 산란 센서에 관한 연구)

  • Hwang, K.J.;Yeoum, K.T.;Kim, K.K.;Song, Y.X.;Wang, X.;Kim, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.242-243
    • /
    • 2007
  • 본 논문은 1310nm 단일모드 광섬유를 이용하여 온도센서로 활용하기 위한 연구이다. 기존광섬유센서의 연구는 복잡한 여러 가지 기기를 이용하여 구성된 시스템이었다. 그리고 산란 변화를 주기 위하여 Bragg 격자나 Pulse generator를 이용하여 광주파수의 변화를 측정하거나, YAG 레이저를 이용 벌크형 시스템을 택하여 구성하였는데 실험 환경을 구성하는 어려움과 측정된 데이터의 정확도에 대한 문제점이 있었다. 본 연구에서 제안한 유도 브릴루앙 산란(sBs: stimulated Brillouin scattering)광을 이용한 온도센서 시스템은 기존의 측정방식 보다 간소화된 직렬방식의 시스템이다. 광주파수에서 발생하는 노이즈와 애매한 결과에 대해서 신뢰성과 정확도를 확보하기 위하여 지능형인 뉴로-퍼지 알고리즘을 이용하여 분석함으로써 기존 시스템 보다 정확한 데이터를 얻고자 하였다. 본 연구에서 sBs는 빛의 산란 특성 중 광주파수가 온도에 변화에 대해 각각의 온도 변화당 천이가 이루어졌음을 측정하였다. 시스템에서 출력된 데이터를 뉴로-퍼지로 분석한 변화율은 1.1MHz/의 결과를 얻었다.

  • PDF