• Title/Summary/Keyword: fiber sensor

Search Result 1,227, Processing Time 0.028 seconds

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

Guided wave field calculation in anisotropic layered structures using normal mode expansion method

  • Li, Lingfang;Mei, Hanfei;Haider, Mohammad Faisal;Rizos, Dimitris;Xia, Yong;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.

Study on Elimination of EMI in ELF-Band for EPS-Based Smart TV Control (전위계차센서 기반 스마트TV 제어를 위한 극저주파 전자기간섭 제거 연구)

  • Jang, Jin-Soo;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.401-407
    • /
    • 2015
  • In this paper, we propose the method to eliminate EMI (Electro-Magnetic Interference) in ELF (Extremely Low Frequency) band below 2 KHz for extending the gesture-recognition distance of smart TVs to more than 3m using electric potential sensor. First, we measure the electric field generated from the back panel of a TV and propose the effective arrangement of two sets of differential sensors as well as the shielding method using metal fiber. Also, we eliminate the PLN (Power Line Noise) and other noise generated from the TV and sensors as well as surrounding environments using filters. Using the proposed EMI eliminating methods, we evaluate displacement ratio on measured signals according to distance between sensors and a moving hand. Experiment results show that our proposed method can extend the hand-gesture sensing distance using EPS (Electric Potential Sensor) up to more than 3m, which is enough to satisfy applicability of EPS based remote control to Smart TVs.

Implementation of 3D Information Acquisition Device for Wearable U-Health (착용형 U-헬스용 3D 정보 입력장치 구현)

  • Kim, Yoon-Ho;Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.640-645
    • /
    • 2008
  • In progress to ubiquitous intelligent society, there are emerging technologies such smart wear related researches as wearable computer, smart fiber and smart fashion. In this paper, wearable 3D information acquisition device which improved both advanced in convenience and portable is implemented. 3D information input system is basically grouped of some modules; Gyro sensor for acquisition of 3D space coordinate, RF transmitter/receiver, and signal processing module etc. To testify the validity of designed system, some experiments are performed using lest board with respect to the communication distance, easiness of wearable and operation sensibility.

  • PDF

Damage Detection and Suppression in Composites Using Smart Technologies

  • Takeda, Nobuo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.26-36
    • /
    • 2001
  • Smart sensors and actuators have recently been developed. In this study, first, small-diameter fiber Bragg grating (FBG) sensors developed by the author, whose cladding and polyimide coating diameters were 40 and $52{\mu}m$, respectively, were embedded inside a laminate without resin-rich regions around sensors and the deterioration of mechanical properties of the composite laminate. The small-diameter FBG sensor was embedded in $0^{\circ}$ ply of a CFRP laminate for the detection of transverse cracks in $90^{\circ}$ ply of the laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. The spectrum became broad and had some peaks with an increase of the transverse crack density. Furthermore, the theoretical calculation reproduced the change in the spectrum very well. These results show that the small-diameter FBG sensors have a potential to detect the occurrence of transverse cracks through the change in the form of the spectrum, and to evaluate the transverse crack density quantitatively by the spectrum width. On the other hand, shape memory alloy (SMA) films were used to suppress the initiation and growth of transverse cracks in CFRP laminates. Pre-strained SMA films were embedded between laminas in CFRP laminates and then heated to introduce the recovery stress in SMA films and compressive stresses in the weakest plies ($90^{\circ}$ ply). The effects of recovery stresses are demonstrated in the experiments and well predicted using the shear-lag analysis and the nonlinear constitutive equation of SMA films.

  • PDF

Advanced flame quality indicator for emission control (저공해 연소를 위한 화염진단장치의 특성)

  • Kim, Jong-Won;Lee, Sang-Ho;Park, Kee-Bae;Sim, Kyu-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.43-50
    • /
    • 1996
  • It is very important to improve the combustion efficiency and reduce pollutant emission in order to save energy and environment. Especially, thermal NOx has been reduced through monitoring burner flame, because the thermal NOx is strongly related to flame characteristics. In this work, a flame-monitoring system was fabricated with photodiode, optical fiber, interference filter and data acquisition system, and it was applied to a lab-scale methane combustion system and a testing facility. Flame intensity and mean frequency increased with increasing turbulent intensity and fuel loading. The sensor signal from flame fluctuations differed from that without flame, which showed the availability af the flame scanner to find the presence of flame. NOx emissions increased with flame intensity.

  • PDF

A Study on Prediction of Fatigue Life using MFC Sensors (MFC센서를 이용한 피로수명예측에 관한 연구)

  • Lee, Ji-Hoon;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.32-36
    • /
    • 2013
  • The large-scale structures have the possibility that there are defects such as cracks due to stress concentration caused by geometric discontinuities in the structure. In this respect, the assessment of fatigue life and the development of structural health monitoring(SHM) are very important. Fatigue design of structure is typically accomplished either using a set of stress cycle (S-N) data obtained from fatigue tests or using the fracture mechanics approach. The stress intensity factor(SIF) is required for the estimation of fatigue crack propagation life from the linear elastic fracture mechanics (LEFM) perspective. In this study, Macro Fiber Composie(MFC) sensor for the measurement of SIF of two dimensional cracks is used. The SIF based on the piezoelectric constitutive law and fracture mechanics are calculated. The measured values of the SIF are later used for the prediction of the crack propagation life. In this study, the measured value of the SIF and the fatigue life are compared with the theoretical results.

Posture control of buoyancy sculptures using drone technology (드론 기술을 이용한 부력 조형물의 자세 제어)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The floating sculptures in the form of ad-ballon commonly used ropes in order to hold on. Relatively air flow is much less indoor than outdoor. Users of buoyancy sculptures hope to be able to maintain their desired posture without being fixed. This study applied drone technology to buoyancy sculptures. The drones can be moved vertically and horizontally, and the posture can be maintained, so buoyancy sculptures are easy to apply. Therefore, we have studied the control system of buoyancy sculpture using drone technology. Also, a control system that can maintain the desired posture at a constant height was studied. The overall shape was a light fiber material and helium gas for zero buoyancy to support the sculpture. The system configuration was STM32F103CB from ARM. In addition, the gyro and acceleration, geomagnetic sensors and motors are composed of small and medium size BLDC motors. The scheduling of the control system in the configuration of the control device was carefully considered. Because the role of the whole component becomes very important. The communication between the components is divided into the sensor fusion and the interface communication with the whole controller. Each communication technology is designed to expand. This study was implemented to actively respond from the viewpoint of posture control using the drone technology.

Comparison of temperature measurements methods to investigate the causes of deformation of packaging materials during microwave heating (전자레인지의 가열조리 시 포장재의 열변형 원인 규명을 위한 온도 측정 방법 비교)

  • Yoon, Chan Suk;Lee, Hwa Shin;Pfeiffer, Thomas;Cho, Ah Reum;Moon, Sang Kwon;Lee, Keun Taik
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.422-431
    • /
    • 2016
  • To investigate the causes of the thermal deformations of packaging materials when microwave-heating ready-to-eat sauce products packaged in stand-up pouches, patterns of temperature changes were determined using an infra-red thermal imaging camera, a thermo-sensitive tape, and a fiver-optic thermometer. The temperature distributions of spicy chicken sauce and Indian curry samples in a stand-up pouch were found to be uneven during micrewave heating. A sharp increase in the temperature was detected, especially above the filling layers and in the corners of sealing layers of the package. The temperature measurements using an infra-red thermal imaging camera are restricted to the surface, and therefore might underestimate the actual temperature. Using a thermo-sensitive tape, temperature up to $200^{\circ}C$ were measured in the spicy chicken sauce sample showing package deformation. When the temperature is measured using a fiber-optic thermometer, it is crucial to have precise sensor performance to accurately measure the temperature in a narrow hot-spot area of the package. In this experiment, the fiber-optic thermometer was attached to a GaAs crystal sensor, which obtained more sensitive and accurate temperature measurements than those by a convectional sensor.

Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors (광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석)

  • Kim, Chang-Hwan;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.513-516
    • /
    • 2011
  • The dynamic behavior of a small wind-turbine blade was analyzed experimentally. Arrays of fiber Bragg-Grating (FBG) sensors attached along the blade were used to measure the strains of the blade surface. An impact test was performed to estimate the resonance frequencies of the fundamental and higher modes of the cantilever blade system developed for this study. The results were similar to the results for conventional strain gages. However, FBG sensors could sense modes that strain gauges could not sense. The strains obtained from the FBG sensor array were used to estimate displacement-mode shapes of the blade.