• Title/Summary/Keyword: fiber grating

Search Result 547, Processing Time 0.023 seconds

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

Comparison of temperature dependance between short and long period fiber gratings (단주기 광섬유 격자(Fiber Grating)와 장주기 광섬유 격자의 온도 의존성 비교)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1791-1796
    • /
    • 2011
  • An optical fiber short period grating of 0.7 nm as a 3 dB wavelength linewidth was fabricated using a Gaussian distributed KrF Eximer laser and a phase mask. This grating has temperature dependancy of 0.01 nm/$^{\circ}C$ over the range of -10 $^{\circ}C$ ~ 70 $^{\circ}C$and no difference between temperature directions. An optical fiber long period grating of 14.22 nm as a 3 dB linewidth was also fabricated using a amplitude mask and has dependancy of 0.01 nm/$^{\circ}C$ over the same range.

A time delay measurement of a chirped fiber grating by using bidirectional modulation of an optical intensity modulator (광변조기의 양방향 변조를 이용한 chirped fiber grating의 시간지연 측정법)

  • Jeon, Geum-Soo;Lee, Yong-Gu;Ban, Jae-Kyung;Heo, Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.510-514
    • /
    • 2002
  • A simple method for a time delay measurement of a chirped fiber grating by using bidirectional modulation of a Mach-Zehnder modulator has been proposed. The bidirectionally modulated light with time difference makes an interference fringe in the RF domain. The time delay of a chirped fiber grating can be obtained by measuring the period of the RF interference fringe for different wavelengths. We have measured the time delay of a chirped fiber grating with a chirped length of 5 cm and a bandwidth of 3.16 nm. The average slope of the time delay has been measured to be 183 ps/nm and its uncertainty has been less than $\pm$1.7%.

Mechanically Induced Long Period Fiber Grating Array Device and Sensor Application (기계적으로 유도되는 장주기 광섬유 격자 배열 소자 및 센서 응용)

  • Lee, Nam-Kwon;Song, Jae-Won;Park, Jea-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.142-148
    • /
    • 2007
  • A mechanically induced long-period fiber grating array was fabricated and its transmission characteristics were measured. The grating away consisted of a rubber cover and a 45 cm metal bar with 10 grating groups. Each grating group was composed of 60 gratings. The period of the grating of the grating groups was increased by $10{\mu}m$ increments from $690{\mu}m$ to $780{\mu}m$. The long period fiber grating was induced when the pressure was applied on the long period grating array and the resonant wavelength depended on the position of applied pressure. The experimental results shows that this long period fiber grating away can be used as a various band rejection filter or a fiber optic sensor.

Control of Free Spectral Range of tong Period Fiber Grating by Cladding Mode Waveguide Dispersion

  • Jeong, H.;Oh, K.
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • A new method to control the free spectral range of a long period fiber grating is proposed and theoretically analyzed. As the refractive index decreases radially outward in the silica cladding due to graded doping of fluorine, waveguide dispersion in the cladding modes was modified to result in the effective indices change and subsequently the phase matching conditions for coupling with the core mode in a long period fiber grating. Enlargement of the free spectral range in a long period fiber grating was theoretically confirmed.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

Development of Flexible Force Sensor Using Fiber Bragg Grating for Tactile Sensor and Its Evaluation (광섬유 브래그 격자를 이용한 촉각 센서용 유연 단축 힘 센서의 개발 및 평가)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.51-56
    • /
    • 2006
  • This paper shows the development of flexible force sensor using the fiber Bragg grating. This force sensor consists of a Bragg grating fiber and flexible silicone rubber (DC184, Dow corning co. Ltd). This sensor does not have special structure to maximize the deflection or elongation, but have good sensitivity and very flexible characteristics. In addition, this sensor has the immunity to the electro magnetic field and can be multiplexed easily, which is inherited from the characteristics of fiber Bragg grating sensor. In the future, this sensor can be utilized the tactile sensor system minimizing the sensor size and developing the fabrication method.

Humidity Sensor Using Polyimide Film Coated Fiber Bragg Grating (폴리이미드가 코팅된 광섬유 브래그 격자를 이용한 습도센서)

  • Jae Chang Yang;Gun Pyo Kim;Kwang Taek Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.594-597
    • /
    • 2023
  • We have proposed and demonstrated a fiber optic RH (relative humidity) sensor based on fiber Bragg grating covered with a polyimide film. As the polyimide film absolves the moisture in the air, its volume expands. As a result, the grating period of the FBG (fiber Bragg grating) covered with a polyimide film becomes wide and the Bragg wavelength is shifted. The sensor is implemented by fixing a 30 ㎛ thickness polyimide film on the surface of an optical fiber grating using an adhesive, and the characteristics of the device according to humidity are analyzed. The fabricated FBG RH sensor showed a high sensitivity of 0.0186 nm/RH% and a wide measurement range from 30% to 90%. The influence of environmental temperature on the characteristics of the RH sensor was also measured and analyzed. The feasibility of commercialization is presented.

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF

Uniform-fiber-Bragg-grating-based Fabry-Perot Cavity for Passive-optical-network Fault Monitoring

  • Xuan, Zhang;Ning, Ning;Tianfeng, Yang
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • We propose a centralized passive-optical-network monitoring scheme using the resonance-spectrum properties of a Fabry-Perot cavity based on fiber Bragg gratings. Each cavity consists of two identical uniform fiber Bragg gratings and a varying cavity length or grating length, which can produce a unique single-mode resonance spectrum for the drop-fiber link. The output spectral properties of each cavity can be easily adjusted by the cavity length or the grating length. The resonance spectrum for each cavity is calculated by the transfer-matrix method. To obtain the peak wavelength of the resonance spectrum more accurately, the effective cavity length is introduced. Each drop fiber with a specific resonance spectrum distinguishes between the peak wavelength or linewidth. We also investigate parameters such as reflectivity and bandwidth, which determine the basic performance of the fiber Bragg grating used, and thus the output-spectrum properties of the Fabry-Perot cavity. The feasibility of the proposed scheme is verified using the Optisystem software for a simplified 1 × 8 passive optical network. The proposed scheme provides a simple, effective solution for passive-optical-network monitoring, especially for a high-density network with small end-user distance difference.