DOI QR코드

DOI QR Code

Control of Free Spectral Range of tong Period Fiber Grating by Cladding Mode Waveguide Dispersion

  • Jeong, H. (Department of information and Communications, Kwangju Institute of Science and Technology) ;
  • Oh, K. (Department of information and Communications, Kwangju Institute of Science and Technology)
  • Received : 2003.04.08
  • Published : 2003.06.01

Abstract

A new method to control the free spectral range of a long period fiber grating is proposed and theoretically analyzed. As the refractive index decreases radially outward in the silica cladding due to graded doping of fluorine, waveguide dispersion in the cladding modes was modified to result in the effective indices change and subsequently the phase matching conditions for coupling with the core mode in a long period fiber grating. Enlargement of the free spectral range in a long period fiber grating was theoretically confirmed.

Keywords

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, and T. Erdogan, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol., vol. 14, pp. 58−65, 1996. https://doi.org/10.1109/50.476137
  2. A. S. Kurkov, M. Douay, O.Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Longperiod fiber grating as a wavelength selective polarization element,” Electron. Lett., vol. 33, pp. 616−617, 1997. https://doi.org/10.1049/el:19970422
  3. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photonics Technol. Lett., vol. 8, pp. 1223−1225, 1996. https://doi.org/10.1109/68.531843
  4. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operation 1.47 $\MU$m,” IEEE Quantum Electron., vol. 31, pp. 1880−1889, 1995. https://doi.org/10.1109/3.469263
  5. J. Kani, M. Jinno, and K. Oguchi, “Fiber Raman amplifier for 1520-nm band WDM transmission,” Electron. Lett., vol. 34, pp. 1745−1747, 1998. https://doi.org/10.1049/el:19981241
  6. R. I. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figure,” IEEE Photon. Technol. Lett., vol. 4, pp. 1345−1347, 1992. https://doi.org/10.1109/68.180571
  7. J. F. Massicott, R. Wyatt, and B. J. Ainslie, “Low noise operation of $Er^{3+}$-doped silica fibre amplifier around 1.6 $\mu$m,” Electron. Lett., vol. 28, pp. 1924−1925, 1992. https://doi.org/10.1049/el:19921231
  8. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathe, “Postfabrication resonance peak positioning of long-period cladding-modecoupled gratings,” Opt. Lett., vol. 21, pp. 1830−1832, 1996. https://doi.org/10.1364/OL.21.001830
  9. Qun Li, Xiaoming Liu, Jiangde Peng, Bingkun Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched singlemode fiber,” IEEE Photon. Technol. Lett., vol. 14, pp. 337−339, 2002. https://doi.org/10.1109/68.986805
  10. J. R. Clowes, J. McInnes, M. N. Zervas, and D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon.Technol. Lett., vol. 10, pp. 403−405, 1998. https://doi.org/10.1109/68.661424
  11. H. Jeong and K. Oh, “Enhancement of free spectral range of the resonance peaks in a long-period fiber grating by controlling material dispersion of cladding modes,” Opt. Commun., vol. 199, pp. 103−110, 2001. https://doi.org/10.1016/S0030-4018(01)01570-X
  12. J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett., vol. 14, p. 326, 1978. https://doi.org/10.1049/el:19780222
  13. J. Kirchhof, S. Unger, and K.-F. Klein, “Diffusion behavior of fluorine in fiber lightguide materials,” Optical Fiber Communication Conference (OFC/IOOC) '93, technical digest, paper WG4, 1993.
  14. M. Stern, Finite-difference analysis of planar optical waveguides, Chapter 4, in PIER 10 (Progress in Electromagnetic Research 10) edited by W. P. Huang, Cambridge, Massachusetts, EMW Publishing, 1995.
  15. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating fibers,” J. Opt. Soc. Am. A, vol. 14, pp. 1760−1773, 1997. https://doi.org/10.1364/JOSAA.14.001760
  16. C. Tsao, Optical fibre waveguide analysis, Chapter 10, Oxford, New York, Oxford University Press, 1992.
  17. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Applied Optics, vol. 22, pp. 3102−3104, 1983. https://doi.org/10.1364/AO.22.003102
  18. K. Oh, U. C. Ryu, S. Kim, J. Yu, H. Jeong, and U. C. Paek, “Evanescent wave filter made of optical fiber with Er doped ring in the inner cladding,” Optoelectronics and communications conference'2000, Tech. Dig. paper 12P-49, Chiba, Japan, 2000.

Cited by

  1. Comparative study of the influence of the aspect ratio of trapezoidal index profiles on the performance of a fiber Raman amplifier vol.49, pp.5, 2010, https://doi.org/10.1117/1.3421554
  2. Step index profile coming out as the best choice for the inner core in fiber Raman gain amplifier under fixed phase matching condition vol.48, 2013, https://doi.org/10.1016/j.optlastec.2012.10.012
  3. Generation of 1.5 Gbps Pseudo-random Binary Sequence Optical Signals by Using a Gain Switched Fabry-Perot Semiconductor Laser vol.9, pp.3, 2005, https://doi.org/10.3807/JOSK.2005.9.3.103