• Title/Summary/Keyword: fiber analysis

Search Result 3,991, Processing Time 0.027 seconds

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Life Cycle Cost Analysis on the Application of FRP in Construction Field (건설구조물에 적용된 섬유복합재료의 LCC 검토)

  • Han, Bog-Kyu;Shin, Gaon-Su;Kim, Ki-Soo;Hong, Geon-Ho
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.34-39
    • /
    • 2006
  • The mechanical properties and durabilities of fiber advanced composites make them ideal for widespread applications in construction worldwide. However, one of the problems of fiber reinforced advanced composites has expensive initial costs. So the efforts for lowering the initial cost have to be needed. There has been hardly assessment results of life cycle cost for fiber reinforced advanced composites in construction field, but some papers showed that total life cycle cost could be profitable, if the initial cost could be reduced. The purpose of this paper is to report assessment results of LCC(Life Cycle Cost) for application of FRP(Fiber Reinforced Plastic) in construction field.

An Experimental Study on Fiber Reinforced Strip Form Isolator (스트립형의 섬유 면진 베어링의 실험적 해석)

  • 문병영;강경주;강범수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.409-416
    • /
    • 2002
  • In order to apply seismic isolators to the low-cost buildings, seismic isolators have to be low-cost and light. In this paper fiber reinforced strip form isolator in which the steel plates of conventional rubber bearing was replaced by fiber was proposed. The proposed fiber reinforced strip form isolator was designed, fabricated, cut and subjected to vertical test and harizontal test. Therefore fiber reinforced strip form isolator was to be shown valid in the view point of fabrication and application to desired size. The harizontal test and vertical test have shown that fiber reinforced strip form isolator could replace the rubber isolator. By these results, low-cost and light seismic isolator can be applied to the low-cost building. These fiber reinforced strip form isolator can be applied to the low-cost building.

  • PDF

Analysis of the Tensile Strength Characteristics of Sand Soil Reinforced by Hair Fiber (헤어섬유로 보강된 모래흙의 인장강도 특성 분석)

  • Son, Moorak;Lee, Jaeyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.23-29
    • /
    • 2016
  • This study was carried out with a view to increasing the tensile strength of sand soil and examined the characteristics of the tensile strength of sand soil reinforced by hair fiber which is environmentally friendly. The study investigated the change of the tensile strength and the stress-strain relationship varying the length of hair fiber, the amount of hair fiber, the amount of cement, and curing days. The test results indicated that the tensile strength increased significantly with hair fiber mixed. In addition, the sand soil mixed with hair fiber had larger displacement at failure. Based on the test results, it is appeared that the environmentally friendly hair fiber could be utilized practically to increase the tensile strength of sand soil in the future.

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

Muscle Fiber Characteristics and Fatty Acid Compositions of the Four Major Muscles in Korean Native Black Goat

  • Hwang, Young-Hwa;Joo, Sung-Hyun;Bakhsh, Allah;Ismail, Ishamri;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.948-954
    • /
    • 2017
  • The objective of this study was to investigate the relationship between muscle fiber characteristics and fatty acid composition of four major muscles in Korean native black goat (KNBG). Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), and gluteus medius (GM) were obtained from five male KNBGs of 36 mon of age and subjected to histochemical analysis and to determine fatty acid composition and meat quality traits. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these four muscles. PM had the highest FNP of type I and the lowest FNP of type IIB, while SM had the highest FNP of type IIB. The highest fat content was observed in LL while SM had the lowest fat content. The proportions of SFA and MUFA were significantly (p<0.05) different among four muscles due to differences in the majority of fatty acids such as oleic (C18:1) and palmitic (C16:0) acids. The PUFA/SFA ratio was significantly (p<0.05) different among four muscles, and the highest PUFA/SFA ratio was observed in PM. Results suggested that LL and PM might be healthful because of higher desirable fatty acid value and PUFA/SFA ratio, respectively. Also, data showed that correlations between muscle fiber types and fatty acids proportion of goat muscles were reversed with those of cattle muscles.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete (초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.