DOI QR코드

DOI QR Code

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo (School of Electrical Engineering and Telecommunications, University of New South Wales) ;
  • Liu, Kun (School of Electrical Engineering and Telecommunications, University of New South Wales) ;
  • Jing, Wencai (College of Precision Instrument & Opto-electronics Engineering, Tianjin University) ;
  • Peng, Gang-Ding (School of Electrical Engineering and Telecommunications, University of New South Wales)
  • Received : 2010.02.23
  • Accepted : 2010.03.08
  • Published : 2010.03.25

Abstract

Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Keywords

References

  1. G. Stewart, K Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12, 843-849 (2001). https://doi.org/10.1088/0957-0233/12/7/316
  2. Y. Zhang, M. Zhang, and W. Jin, “Multi-point, fiber-optic gas detection with intra-cavity spectroscopy,” Opt. Comm. 220, 361-364 (2003). https://doi.org/10.1016/S0030-4018(03)01421-4
  3. M. Zhang, D. N. Wang, W. Jin, and Y. B. Liao, “Wavelength modulation technique for intra-cavity absorption gas sensor,” IEEE Trans. Instrum. Meas. 53, 136-139 (2004). https://doi.org/10.1109/TIM.2003.822189
  4. H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, “Tunable Erbium-doped fiber ring laser for applications of infrared absorption spectroscopy,” Opt. Comm. 275, 379-384 (2007). https://doi.org/10.1016/j.optcom.2007.03.034
  5. K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, Y. Wang, T. G. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intra-cavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20, 1515-1517 (2008). https://doi.org/10.1109/LPT.2008.928526
  6. Y. Zhang, M. Zhang, and W. Jin, “Sensitivity enhancement in Erbiumdoped fiber laser intra-cavity absorption sensor,” Sens. Actuators A 104, 183-187 (2003). https://doi.org/10.1016/S0924-4247(03)00058-X
  7. X. Dong, P. Shum, N. Q. Ngo, H.-Y. Tam, and X. Dong, “Output power characteristics of tunable Erbium-doped fiber ring lasers,” IEEE J. Lightwave Technol. 23, 1334-1341 (2005). https://doi.org/10.1109/JLT.2004.839986
  8. A. Bellemare. M. Karbsek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE. J. Select. Topics Quantum Electron. 7, 22-29 (2001). https://doi.org/10.1109/2944.924005
  9. T. Pfeiffer, H. Schmuck, and H. Bulow, “Output power characterisitics of Erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 4, 847-849 (1992). https://doi.org/10.1109/68.149883
  10. S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, “Design optimisation of Erbium-doped fiber ring laser through numerical simulation,” Opt. Comm. 170, 247-253 (1999). https://doi.org/10.1016/S0030-4018(99)00462-9
  11. S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, “Behavioral investigaions of an Erbiumdoped fiber ring laser through numerical simulations,” Opt. Fiber Technol. 6, 155-163 (2000). https://doi.org/10.1006/ofte.1999.0321
  12. M. Karasek and J. A. Valles, “Analysis of channel addition/removal response in all-optical gain-controlled cascade of Erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 16, 1795-1803 (1998). https://doi.org/10.1109/50.721066
  13. C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991). https://doi.org/10.1109/50.65886
  14. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171-202 (1999). https://doi.org/10.1007/s003400050793
  15. Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of Erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Comm. 234, 435-441 (2004). https://doi.org/10.1016/j.optcom.2004.02.046
  16. HITRAN Molecular Spectroscopic Database 2004.

Cited by

  1. Tunable Q-switched thulium-doped Fiber Laser using multiwall carbon nanotube and Fabry-Perot Etalon filter vol.383, 2017, https://doi.org/10.1016/j.optcom.2016.09.033
  2. Performance Analysis and Design Optimization of an Intracavity Absorption Gas Sensor Based on Fiber Ring Laser vol.29, pp.24, 2011, https://doi.org/10.1109/JLT.2011.2172187
  3. Pulsed erbium fiber laser with an acetylene-filled photonic crystal fiber for saturable absorption vol.36, pp.18, 2011, https://doi.org/10.1364/OL.36.003569
  4. 2µm mode-locked thulium-doped fiber laser using Mach–Zehnder interferometer tuning capability vol.27, pp.6, 2017, https://doi.org/10.1088/1555-6611/aa6bd8
  5. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system vol.23, pp.10, 2013, https://doi.org/10.1088/1054-660X/23/10/105107
  6. Dichloromethane Detection Based on Near-Infrared Absorptive Sensing vol.18, pp.5, 2012, https://doi.org/10.1109/JSTQE.2011.2180367
  7. Influence of fiber parameters to the erbium-doped fiber amplifier (EDFA) gain: A theoretical modeling vol.162, 2017, https://doi.org/10.1051/epjconf/201716201030
  8. Aluminized Film as Saturable Absorber for Generating Passive Q-Switched Pulses in the Two-Micron Region vol.35, pp.12, 2017, https://doi.org/10.1109/JLT.2017.2684197
  9. Humidity Sensor Based on Fabry–Perot Interferometer and Intracavity Sensing of Fiber Laser vol.35, pp.21, 2017, https://doi.org/10.1109/JLT.2017.2750172
  10. Impact of Booster Section Length on the Performance of Linear Cavity Brillouin-Erbium Fiber Laser vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.162
  11. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing vol.56, pp.13, 2017, https://doi.org/10.1364/AO.56.003867
  12. m vol.28, pp.5, 2018, https://doi.org/10.1088/1555-6611/aab2cc