DOI QR코드

DOI QR Code

Analysis of the Tensile Strength Characteristics of Sand Soil Reinforced by Hair Fiber

헤어섬유로 보강된 모래흙의 인장강도 특성 분석

  • Son, Moorak (Department of Civil Engineering, Daegu University) ;
  • Lee, Jaeyong (Department of Civil Engineering, Daegu University)
  • Received : 2015.11.20
  • Accepted : 2016.01.11
  • Published : 2016.02.01

Abstract

This study was carried out with a view to increasing the tensile strength of sand soil and examined the characteristics of the tensile strength of sand soil reinforced by hair fiber which is environmentally friendly. The study investigated the change of the tensile strength and the stress-strain relationship varying the length of hair fiber, the amount of hair fiber, the amount of cement, and curing days. The test results indicated that the tensile strength increased significantly with hair fiber mixed. In addition, the sand soil mixed with hair fiber had larger displacement at failure. Based on the test results, it is appeared that the environmentally friendly hair fiber could be utilized practically to increase the tensile strength of sand soil in the future.

본 연구는 모래흙의 인장강도 증진에 관한 것으로서 친환경 헤어섬유를 혼입한 모래흙의 인장강도 특성을 파악하였다. 본 연구에서는 헤어섬유의 길이 및 혼입률, 시멘트의 첨가량, 양생기간을 변화시키며 헤어섬유 혼입 모래흙의 인장강도를 조사하였으며, 또한 응력-변형률 특성을 파악하였다. 시험결과, 헤어섬유 혼입 모래흙은 상당한 인장강도 증진을 보였다. 뿐만 아니라, 헤어섬유 혼입 모래흙은 파괴 시 더 큰 변위를 겪을 수 있는 것으로 나타났다. 이와 같은 결과를 토대로 향후 모래흙의 인장강도 증진을 위해 친환경 재료인 헤어섬유를 실무적으로 활용해도 될 것으로 판단된다.

Keywords

References

  1. Cai, Y., Shi, B., Ng, W. W. and Tang, C. (2006), Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil, Engineering Geology, Vol. 87, pp. 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007
  2. Cho, S. D. and Kim, J. M. (1995), The experimental study on engineering properties of fiber reinforced soil, Geotechnical Engineering, Vol. 11, No. 2, pp. 107-120 (in Korean).
  3. Consoli, N. C., Bellaver Corte, M. and Festugato, L. (2012), Key parameter for tensile and compressive strength of fibrereinforced soil-lime mixtures, Geosynth. Int., Vol. 19, Issue 5, pp. 409-414. https://doi.org/10.1680/gein.12.00026
  4. Consoil, N. C., Prietto, P. D. M. and Ulbrich, L. A. (1998), Influence of fiber and cement addition on behavior of sandy soil, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 12, pp. 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211)
  5. Consoli, N. C., Vendruscolo, M. A., Fonini, A. and Dalla Rosa, F. (2009), Fiber reinforcement effects on sand considering a wide cementation range, Geotext. Geomembr., Vol. 27, pp. 196-203. https://doi.org/10.1016/j.geotexmem.2008.11.005
  6. Diambra, A., Ibraime, E., Muir Wood, D. and Ruessell, A. R. (2010), Fibre reinforced sands: experiments and modelling, Geotext. Geomembr., Vol. 28, pp. 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010
  7. Freitag, D. R. (1986), Soil randomly reinforced with fibers, Journal of Geotechnical Engineering, Vol. 112, No. 8, pp. 823-826. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(823)
  8. Gray, D. H. and Ohashi, H. (1983), Mechanics of fiber reinforcement in sand, Journal of Geotechnical Engineering, Vol. 109, No. 3, pp. 335-353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)
  9. Kim, W. S, Jung, D. H. and Cho, I. M. (2002), Compressive strength characteristics of PVA fiber reinforced soil-cement mixture, Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 147-156 (in Korean).
  10. Kutanaei, S. and Choobbasti, A. (2015), Triaxial behavior of fiber-reinforced cemented sand, Journal of Adhesion Science and Technology, 10.1080/01694243.2015.1110073, pp. 1-15.
  11. KS F 2329 (2012), Testing method for making curing of soilcement compression and flexure test specimens in the laboratory, Korean Standards Association (in Korean).
  12. Maher, M. and Ho, Y. (1993), Behavior of fiber-reinforced cemented sand under static and cyclic loads, Geotechnical Testing Journal, Vol. 16, No. 3, pp. 330-338. https://doi.org/10.1520/GTJ10054J
  13. Maher, M. and Ho, Y. (1994), Mechanical Properties of Kaolinite/ Fiber soil composite, Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 8, pp. 1381-1393. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381)
  14. Park, S. S., Kim, Y. S. and Lee, J. C. (2007), Unconfined compressive strength of fiber-reinforced cemented sands by fiber reinforcement form, Korean Geotechnical Society, Vol. 23, No. 8, pp. 159-169 (in Korean).
  15. Son, M., Song, H. S. and Lee, J. Y. (2015), Analysis of the strength characteristics of hair fiber reinforced clay soil, Korean Geotechnical Society, Vol. 31, No. 6, pp. 15-25 (in Korean).
  16. Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and Geomembranes, Vol. 25, No. 3, pp. 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  17. Yang, Z. (1972), Strength and deformation characteristics of reinforced sand, Ph.d thesis. University of California, Los Angeles.
  18. Yetimoglu, T., Inanir, M. and Inanir, O. E. (2005), A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay, Geotextiles and Geomembranes, Vol. 23, No. 2, pp. 174-183. https://doi.org/10.1016/j.geotexmem.2004.09.004
  19. Wang, Y. (1999), Utilization of recycled carpet waste fibers for reinforcement of concrete and soil, J. Polym. Plast. Technol. Eng., Vol. 38, Issue 3, pp. 533-546. https://doi.org/10.1080/03602559909351598