• 제목/요약/키워드: fiber analysis

Search Result 3,991, Processing Time 0.034 seconds

Wallerian Degeneration of Insufficiently Affected White Matters in Old Infarction: Tract of Interest Analysis of Diffusion Tensor Imaging

  • Choi, Chi-Hoon;Lee, Jong-Min;Koo, Bang-Bon;Park, Jun-Sung;Kwon, Jun-Soo;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2007
  • The application of diffusion tensor imaging (DTI) and fiber tractography to Wallerian degeneration (WD) is important because this technique is a very potent tools for quantitatively evaluating fiber tracts in vivo brain. We analyzed a case and control using tracts of interest (TOI) analysis to quantify WD. We scanned a case of old infarction and an age-matched healthy volunteer. T1 magnetization prepared rapid acquisition gradient echo (MPRAGE), fluid attenuated inversion recovery (FLAIR) and 12-direction diffusion tensor imaging (DTI) were obtained and analyzed using TOI analysis. The value of mean diffusity ($D_{av}$) and fracional anisotrophy (FA) were analyzed statistically by MWU test. A p-value of less than 0.05 was considered to indicate statistical significance. A comparison of the global fiber diffusion characteristics shows WD of both the corpus callosum and the ipsilateral superior longitudinal fasciculus. The corpus callosum in particular showed trans-hemispherical degeneration. Local fiber characteristics along the geodesic paths show WD in the corpus callosum, ipsilateral superior longitudinal fasciculus, ipsilateral corticospinal tract, and ipsilateral corticothalamic tract. We have demonstrated changes in $D_{av}$ and FA values and a clear correspondence with the WD in various tracts. TOI analysis successfully revealed radial WD in white matter tracts from a region of encephalomalacia and primary gliosis, although they were only slightly affected.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring (복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1345-1350
    • /
    • 2014
  • This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

A Study on Thermal Analysis with Strength Characteristics of HPC Column with Fiber Cocktail in KS Fire Curve (표준화재조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 전열특성에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.397-400
    • /
    • 2008
  • To carry out this study efficiently, the material, physical and mechanical properties of the existing high temperature area was identified and the thermal transportation of structural elements was carried out through the finite element analysis method(ABAQUS) for 40 to 100 MPa high strength concrete based on Fiber Cocktail mixing. The results are as follows. First, it was analyzed that 40, 50 and 60 MPa high strength concretes have a thermal transportation properties similar to the analysis model of 30 MPa normal concrete. Second, it was analyzed that the analysis model of 80 and 100 MPa high strength concrete have slightly lower thermal transportation properties compared to normal model. Third, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance-based design of fire-resistant construction.

  • PDF

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Optical Delay Amplified by Chirped Fiber Bragg Gratings

  • Lee, Byeong-Ha;Mudhana, Gopinath
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.224-229
    • /
    • 2003
  • We report a novel optical delay line that can be implemented using only optical fiber and fiber devices without the need for any bulk-optic devices such as lens, prism, and moving mirror. The dispersive property of a chirped fiber Bragg grating (CFBG) is exploited to get the delay. The proposed delay line constitutes two identical CFBGs cascaded in the reverse order with one of them being strained. Analysis reveals that the small displacement or the strain applied on the CFBG is effectively amplified in the delay line by the ratio of the minimum resonant wavelength and the reflection bandwidth of the CFBG. The dispersion properties of the CFBG with and without the strain are analyzed in detail. The theoretical performance of the proposed delay line is also discussed. Applications of the proposed delay line are expected in the field of high-speed optical coherence tomograpy.

Analysis of System Performance Degradation Using Sinusoidally Modulated Signal in Optical Fiber Communication Systems

  • Lee, Jong-Hyung;Han, Dae-Hyun;Park, Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • The response of a single-mode fiber to a sinusoidally modulated input has been studied to see its utility in measuring system performance in the presence of fiber nonlinearities. The sinusoidally modulated signal models an alternating bit sequence of ones and zeros in on-off keying. The sinusoidal response of normally dispersive fiber shows a strong correlation with eye-opening penalty (EOP) over a wide range of the nonlinearity parameter N (0.1 < N$^2$< 100). This result implies that the measurement of the sinusoidal response can be an alternate way of measuring EOP without having a long sequence of randomly modulated input bits. But in the anomalous dispersion region, the sinusoidal response has a much more limited range of application to estimate system performance.

A Study on the Physical Properties of Mineral Hydrate Insulation Material Mixed with Basalt Fiber

  • Park, Jae-Wan;Chu, Yong-Sik;Seo, Sung-Kwan;Jeong, Jae-Hyen
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Mineral hydrate is a new insulation material that compensates for the defects of existing materials. Mineral hydrate is made of inorganic ingredients; therefore, it is nonflammable. The porous structure of mineral hydrate makes the material lightweight and insulating. Mineral hydrate insulation and similar products have been studied and manufactured in Korea and abroad. However, these insulation materials need to improve in terms of strength. In this study, basalt fiber was used to enhance the strength. In order to observe the property changes, compressive strength, heat conductivity, and specific gravity were measured and XRD pattern analysis was performed. These tests confirmed that basalt fiber was effective at improving the strength and lowering the heat conductivity of mineral hydrate insulation.

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.