DOI QR코드

DOI QR Code

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring

복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측

  • 오성하 (맥소프트(주) 기술연구소) ;
  • 최복록 (강릉원주대학교 기계자동차공학부)
  • Received : 2014.05.27
  • Accepted : 2014.08.25
  • Published : 2014.12.01

Abstract

This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

본 연구에서는 자동차 판스프링을 대상으로 유리섬유 복합재의 적용을 위한 해석적 방법들을 제시하였다. 즉, 판스프링의 정적거동에 영향을 미치는 복합재 재료의 구성 성분비와 섬유각의 변화 등을 고려한 해석을 수행하였다. GFRP 복합재의 기계적 성질들은 ASTM 표준시험 방법을 따라서 직접 측정하였으며, 역해석 방법을 통해서 섬유와 수지 각각의 직교이방성과 등방성 성질들을 시험결과들로부터 재구성하였다. 다음으로 섬유의 방향과 섬유와 수지의 함유량 비와 같은 주요 재료변수들의 변화에 따른 스프링 계수들의 변화를 분석하였다. 마지막으로 초기 파괴하중을 예측하기 위해서 선형 탄성해석과 파손조건식을 이용해서 점진적 파괴해석을 수행하였으며, 그 결과 최초의 손상부위는 전단응력에 의해 판스프링의 모서리 부위에서 발생하였다.

Keywords

References

  1. Kim, K. S., Bae, K. M., Oh, S. Y. and Seo, M. K., 2012, "Trend of Carbon Fiber-Reinforced Composites for Lightweight Vehicles," Elastomers and Composites, Vol. 47, No. 1, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Oh, S. H. and Choi, B. L. 2014, "Analytical and Experimental Study for Development of Composite Coil Springs," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 1, pp. 31-36. https://doi.org/10.3795/KSME-A.2014.38.1.031
  3. Bogdanovich, A. E., 2006, "Multi-Scale Modeling, Stress and Failure Analyses of 3-D Woven Composites," Journal of Materials Science, Vol. 41, No. 20, pp. 6547-6590. https://doi.org/10.1007/s10853-006-0197-2
  4. Kang, M. S., Park, H. S., Choi, J. H. and Koo, J. M., 2012, "Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 8, pp. 881-887. https://doi.org/10.3795/KSME-A.2012.36.8.881
  5. Jeffrey Kueh, J. T. and Faris, T., 2012 "Finite Element Analysis on the Static and Fatigue Characteristics of Composite Multi-Leaf Spring," Journal of Zhejiang University A, Vol. 13, No. 3, pp. 159-164.
  6. Ellul, B., Camilleri, D. and Betts, J. C., 2013, "A Progressive Failure Analysis Applied to Fiber-Reinforced Composite Plates Subject to Out-of-Plane Bending," Mechanics of Composite Materials, Vol. 49, No. 6, pp. 605-620.
  7. Kim, S. Y., Geum, J. H., Koo, J. M. and Seok., C. S., 2010, "Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 295, pp. 481-486. https://doi.org/10.3795/KSME-A.2010.34.4.481
  8. ASTM Annual Book of Standards, 2001.
  9. GENOA Technical Manual. Ver. 5. 2013, AlphaStar.
  10. Hull, D., 1981, An Introduction to Composite Materials, Cambridge Univ. Press, pp. 102-124.
  11. Shokrieh, M. M., Torabizadeh, M. A. and Fereidoon, A., 2012, "Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures," Strength of Materials, Vol. 44, No. 3, pp. 314-324. https://doi.org/10.1007/s11223-012-9384-3

Cited by

  1. Study on the Linear Static Structural Analysis Error of Helical Compression Springs vol.40, pp.2, 2016, https://doi.org/10.3795/KSME-A.2016.40.2.237