• 제목/요약/키워드: fertilizer concentrations

검색결과 538건 처리시간 0.026초

비료의 성분 및 종류와 묘목과의 관계 연구 II. 묘목의 부위별 양분 농도에 미치는 영향 (Relationship Between Composition and Type of Fertilizer and Seedling Growth II. Nutrient Concentration of Seedling Components)

  • 황정옥;손요환;이명종;변재경;정진현;이천용
    • 임산에너지
    • /
    • 제24권1호
    • /
    • pp.13-27
    • /
    • 2005
  • 새로운 산림용 복합비료를 개발하기 위하여 소나무, 낙엽송, 자작나무, 상수리나무 묘목을 대상으로 성분비가 다른 비료 및 종류가 다른 고형복합비료를 처리하고 묘목의 부위별 양분 농도를 측정하였다. 질소, 인, 칼륨의 비를 각기 달리한 시비수준별 처리실험에서 질소와 인 시비 후 묘목내 이들 양분의 농도가 증가하였다. 또한 소나무와 상수리나무에서 칼륨 시비량 증가에 따라 묘목 내 양분 농도가 증가하는 효과를 보였으나, 나머지 두 수종에서는 처리별 차이가 나타나지 않았다. 산림용 고형복합비료와 UF 고형복합비료를 처리한 비료 종류별 처리실험에서는 시비량이 증가할수록 묘목 내 질소와 인의 농도가 증가하는 현상이 나타났다. 소나무에서의 칼륨 농도와 낙엽송에서의 나트륨과 칼슘 농도도 유사한 현상을 보였으며, 나머지 수종에서는 처리별 차이를 나타내지 않았다. 비료의 종류를 달리하여 처리한 결과 묘목 내 양분 농도 변화 효과는 없는 것으로 나타났다.

  • PDF

Temporal Variations in Isotope Ratios and Concentrations of Nitrate-nitrogen in Groundwater as Affected by Chemical Fertilizer and Livestock Manure

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun;Park, Jung-Geun;Lee, Sang-Mo;Jin, Sheng-ai
    • Journal of Applied Biological Chemistry
    • /
    • 제42권4호
    • /
    • pp.186-190
    • /
    • 1999
  • Isotope ratio ($^{15}N/^{14}N$) and nitrate-nitrogen concentration in groundwater were measured to investigate the effect of chemical fertilizer and livestock manure on temporal variations in nitrate-nitrogen concentration and to estimate the contribution of fertilizer and manure to groundwater contamination by nitrate. Four study wells from a rural area in Kyonggi province were selected. One well was located on an upper site from a livestock feedlot, and the others were situated at lower sites from the feedlot. The ${\delta}^{15}N$ values were analyzed by a stable isotope ratio mass spectrometer (Micromass, VG Optima IRMS). Reproducibility of the method and precision of the mass spectrometer were below 1.0 and 0.1‰, respectively Even though study wells were located at the same area, nitrate-nitrogen concentrations and ${\delta}^{15}N$ values differed and fluctuated during the sampling period. The ${\delta}^{15}N$ values of well located at upper site from the feedlot were extremely variable (-1.48~20.80‰). The ranges of ${\delta}^{15}N$ value of three wells situated at lower sites from the feedlot were 11.83~20.73 (ave. 16.11), 8.90~11.73 (ave.11.01), and 5.29~12.73‰ (ave. 8.21‰) with increasing distance from the feedlot. The average values of contribution proportion of nitrogen derived from livestock manure to nitrate-nitrogen in groundwater were 79% for the well closet to the feedlot, 44% for the well most distant from the feedlot, and 56% for the well in between the two wells.

  • PDF

Radioactive Concentrations in Chemical Fertilizers

  • Gwang-Ho Kim;Jae-Hwan Cho
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.195-203
    • /
    • 2022
  • Background: The aim of the present study was to determine radioactive concentrations in fertilizers known to contain essential nutrients. Results of this study could be used as basic data to monitor the impact of chemical fertilizers on the environment and public health. Nitrogen fertilizers, calcium fertilizers, sulfur fertilizers, phosphate acid fertilizers, and potassium chloride fertilizers were used in this study. Materials and Methods: Five chemical fertilizers were pulverized, placed in polyethylene containers, and weighed. The time to measure each specimen was set to be 3,600 seconds for a scintillator-based gamma-ray spectroscopy system. Concentration of gamma radionuclide was analyzed based on obtained spectra. At the end of the measurement, the spectrum file was stored and used to calculate radioactive concentrations using a gamma-ray spectrometer software. Results and Discussion: In the nitrogen fertilizer, 3.49 ± 5.71 Bq/kg of 137Cs, 34.43 ± 7.61 Bq/kg of 134Cs, and 569.16 ± 91.15 of 40K were detected whereas 131I was not detected. In the calcium fertilizer, 5.74 ± 4.40 Bq/kg of 137Cs (the highest concentration among all fertilizers), 22.37 ± 5.39 Bq/kg of 134Cs, and 433.67 ± 64.24 Bq/kg of 40K were detected whereas 131I was not detected. In the sulfur fertilizer, 347.31 ± 55.73 Bq/kg of 40K, 19.42 ± 4.53 Bq/kg of 134Cs, 2.21 ± 3.49 of 137Cs, and 0.04 ± 0.22 Bq/Kg of 131I were detected. In the phosphoric acid fertilizer, 70,007.34 ± 844.18 Bq/kg of 40K (the highest concentration among all fertilizers) and 46.07 ± 70.40 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. In the potassium chloride fertilizer, 12,827.92 ± 1542.19 Bq/kg of 40K was and 94.76 ± 128.79 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. The present study examined inorganic fertilizers produced by a single manufacturer. There might be different results according to the country and area from which fertilizers are imported. Further studies about inorganic fertilizers in more detail are needed to create measures to reduce 40K. Conclusion: Measures are needed to reduce radiation exposure to 40K contained in fertilizers including phosphoric acid and potassium chloride fertilizers.

Adverse Effects on Crops and Soils Following an Accidental Release of Hydrogen Fluoride and Hydrofluoric Acid

  • Kang, Dae-Won;Kim, Hyuck-Soo;Kunhikrishnan, Anitha;Kim, Da-In;Lee, Seul;Park, Sang-Won;Yoo, Ji-Hyock;Kim, Won-Il
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.651-654
    • /
    • 2016
  • A number of accidents relating to highly toxic hydrogen fluoride (HF) or hydrofluoric acid (HA) release have occurred over fast few decades in Korea. Thus, this study was conducted to investigate the fluoride (F) concentrations in paddy soil and brown rice from 2 different areas where the soils were exposed to HF and HA. In the first case, the HF leakage accident that occurred in 2012 affected the surrounding soils and crops and consequently, crops (rice) affected by HF were unavailable for forage even though F did not accumulate in the soil. For example, at the time of accident, F concentrations in brown rice samples were $33.0-1,395mg\;kg^{-1}$, while F concentrations in soil samples were $155-295mg\;kg^{-1}$ which were less than the Korean standard guideline values of $400mg\;kg^{-1}$. However, after a year, F concentrations in brown rice were observed below the detection limit ($1mg\;kg^{-1}$), although F concentrations in soils were similar with those in 2012. Also, large amounts of wastewater discharges containing HA occurred in 2013 and some agricultural soils exceeded the Korean standard guideline values for F ($400mg\;kg^{-1}$), but soil-plant F transfer was not observed. In conclusion, it was observed that soil to plant transfer of F is unlikely although HF and HA as gas or liquid form can cause direct damage to plants.

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

Assessment of Heavy Metal Concentrations in Greenhouse Soils of Gyeongnam Province

  • Son, Daniel;Cho, Hyeon-Ji;Heo, Jae-Young;Lee, Byeong-Jeong;Hong, Kwang-Pyo;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.383-390
    • /
    • 2017
  • Heavy metal contamination of soil might be a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study, the total content of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg) in soils was analyzed, and the difference of heavy metal contents depending on crops, soil characteristics, and topography was compared in 169 greenhouse soils obtained from Gyeongnam Province. The concentrations of the heavy metals were $0.25mg\;kg^{-1}$ (ranged 0.01~0.44) for Cd, $28.94(0.53{\sim}72.63)mg\;kg^{-1}$ for Cr, $26.03(0.5{\sim}166.13)mg\;kg^{-1}$ for Cu, $14.91(1.27{\sim}33.22)mg\;kg^{-1}$ for Ni, $15.76(0.43{\sim}57.1)mg\;kg^{-1}$ for Pb, $119.72(6.33{\sim}239.39)mg\;kg^{-1}$ for Zn, $2.54(0.01{\sim}23.57)mg\;kg^{-1}$ for As, and $0.049(0.012{\sim}0.253)mg\;kg^{-1}$ for Hg in topsoils. The concentrations of Pb and As in topsoil were highest in green pepper and those of Cd, Cr, and Ni were highest in melon. In addition, the concentrations of Cr and Ni were highest in diluvial terrace compared with the other topographies. Higher concentrations of Cd, Cr, and Ni were found in silty clay loam and silt loam soils than sandy loam and loam soils.

Distribution of Cd and Pb Accumulated in Medicinal Plant Roots and Their Cultivation Soils

  • Seo, Byoung-Hwan;Kim, Hyuck Soo;Bae, Jun-Sik;Kim, Won-Il;Hong, Chang-Ho;Kim, Kwon-Rae
    • 한국토양비료학회지
    • /
    • 제48권4호
    • /
    • pp.278-284
    • /
    • 2015
  • In general, plant roots accumulate more heavy metals than the above ground organs such as leaf, stem, and fruit. This implies that root medicinal plants would be an issue with excessive heavy metal accumulation. Therefore, the current study was carried out to investigate the distribution of heavy metal (focused on Cd and Pb) concentrations in soils and medicinal plant roots grown in different region of Korea. Total 293 samples for each soil and plant were collected along the national wide. Soil pH, total and phytoavailable metal concentrations (1 M $NH_4NO_3$ extracted) in soils were determined and heavy metal concentrations in root of the medicinal plants were analyzed. Heavy metal concentrations of the soil samples studied were not exceeded standard limits legislated in 'Soil Environmental Conservation Act', except 2 samples for Cu. However, substantial amount of Cd was accumulated in medicinal plant roots with 29% samples exceeding the standard limit legislated in 'Pharmaceutical Affairs Act' while all plant samples were lower than the standard limit value for Pb. Also the current study demonstrated that cadmium concentrations in the roots were governed by the phytoavailable Cd in soils, which decreased as soil pH increased. From this result, application of heavy metal immobilization technique using a pH change-induced immobilizing agents can be suggested for safer root medicinal plant production.

Distribution of Arsenic Fraction in Soil Around Abandoned Mining Area and Uptake by Rice

  • Kim, Hyuck-Soo;Go, Woo-Ri;Kang, Dae-Won;Yoo, Ji-Hyock;Kim, Kye-Hoon;Kim, Won-Il
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.391-396
    • /
    • 2015
  • Arsenic (As) contamination of agricultural soils resulting from mining activity has caused major concern due to the potential health risk. Therefore the current study was carried out to investigate the relationship between fractionation of As in soil and rice uptake and to provide a basic information for adequate management of As contaminated agricultural soil. Twenty agricultural soils and rice affected by the abandoned mining sites were collected. Soil chemical properties and As concentrations (total and sequential extracted) in soils were determined and As concentrations in polished rice were analyzed. The average concentration of As in non-specifically adsorbed (F1), specifically adsorbed (F2), amorphous hydrous oxides of Fe and Al (F3), crystalline hydrous oxides of Fe and Al (F4) and residual phase (F5) were 0.08, 1.38, 10.34, 3.26 and $10.98mgkg^{-1}$, respectively. Both soil pH and available phosphorus were positively correlated with the concentrations of As in F1 and F2. These results indicate that increasing the soil pH and available phosphorus can significantly increase the easily mobile fractions of As (F1 and F2). The average concentration of As in polished rice was $0.09mgkg^{-1}$. The concentrations of As in F1 and F2 showed a positive correlation with the concentrations of As in polished rice. Therefore soil pH and available phosphorus affect the distribution of As fractionation in soils and thus affect As bioavailability.

양수장지구 구획논 물수지와 영양염류 유출부하 (Water Balance and Nutrient Losses of Paddy Fields Irrigated from a Pumping Station)

  • 최진규;구자웅;손재권;조재영;윤광식;한국헌
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.394-398
    • /
    • 2001
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 6.3 % to 8.0 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1 % to 10.7 % for nitrogen and 0.2 % for phosphorus, respectively.

  • PDF

개화 후 비료의 농도가 Ornamental Pepper의 생장과 착과에 미치는 영향 (Fertilizer Concentration after Flowering Affects Growth and Fruit Setting of Ornamental Pepper)

  • 진영욱;정순주;이범선;강종구
    • 생물환경조절학회지
    • /
    • 제12권2호
    • /
    • pp.95-100
    • /
    • 2003
  • Ornamental pepper의 생장과 착과에 미치는 개화 후 비료 농도의 영향을 구명하기 위하여 정식 후부터 개화시까지 $100\;mg{\cdot}L^{-1}\;(EC=0.8\;dS{\cdot}m^{-1})$의 N농도로 재배하였고 그 후부터 0, 100, 200, $300\;mg{\cdot}L^{-1}$의 N 농도(EC=0.15, 0.8, 1.45, $2.1\;dS{\cdot}m^{-1}$)로 처리하여 수확시까지 재배하였다. $200 \;mg{\cdot}L^{-1}$의 N 농도 처리에서 최대 엽면적과 건물을 수확했으며 식물체당 전체 과일 무게도 가장 무거웠다. 100, 200, $300\;mg{\cdot}L^{-1}$의 N농도에서는 식물체당 과일 수에서 차이가 없었으며, $0\;mg{\cdot}L^{-1}$의 N농도에서 과일수가 현저히 감소하였으나 과일의 착색비율은 높았다. 100, 200, $300\;mg{\cdot}L^{-1}$의 N 농도로 화분에 관비했을 때 화분내 배지의 EC는 각각 0.8에서 $1.2dS{\cdot}m^{-1}$, 2.0에서 $3.0dS{\cdot}m^{-1}$, 3.0에서 $4.5dS{\cdot}m^{-1}$ 수준을 나타냈다. 200과 $300\;mg{\cdot}L^{-1}$의 N농도 처리구에서 배지의 pH가 낮았는데 특히 생육후기에는 4.9정도까지 낮아졌다. 식물체내 무기성분 함량은 대부분 개화 후 비료의 농도에 의해 영향 받지 않았으나 오직 aluminum은 비료의 농도가 증가함에 따라 직선적으로 감소하였다. 이 실험에서 ornamental pepper의 상업적 생산을 위해서는 개화 후 질소의 농도를 100에서 $200\;mg{\cdot}L^{-1}$ 농도로 하는 것이 좋으며, 이 때 배지의 EC는 0.8에서 $3\;dS{\cdot}m^{-1}$로 비교적 넓은 범위를 보였다.