• Title/Summary/Keyword: fermentation conditions

Search Result 1,150, Processing Time 0.034 seconds

Optimization of the Acetic Acid Fermentation Condition for Preparation of Strawberry Vinegar (딸기식초 제조를 위한 초산발효 조건 최적화)

  • 이기동;김숙경;이진만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.812-817
    • /
    • 2003
  • In the first stage, strawberry wine was manufactured in 14$^{\circ}$Brix initial sugar content, for 50 hr at 28$^{\circ}C$ using Saccharomyces kluyeri DJ97. In the second stage, the acetic acid fermentation conditions for maximun acidity (4.60%) were 1.48% initial acidity and 195.76 rpm in agitation rate for 7.34 day. The fermentation conditions for maximun Hunter color a value were 1.78% initial acidity and 117.63 rpm in agitation rate for 7.35 day. Therefore, optimum acetic acid fermentation conditions were 1.5% initial acidity and 196 rpm in agitation rate for 176 hr using Acetobacter sp. PA97.

A Study on the Conditions of Demethyltetracycline Fermentation (Demethylteracycline 발효조건에 관한 연구)

  • 최남희;장덕진;양한철;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.203-206
    • /
    • 1992
  • Conditions of fermentation for the production of demethyltetracycline were examined using the mutant, which was obtained through the cell fusion of demeclocycline producing strains, The optimum temperature and the initial pH of broth for demethyltetracycline fermentation were $25^{\circ}C$ and 6.7, respectively. Unlike any other cases, the control of pH with alkali solution during the fermentation process affected the productivity. As a general rule, the larger the inoculum size the higher the early consumption of sugar and the viscosity of broth, which means that fermentation proceeds more rapidly as the inoculum size is increased. The highest productivity was shown when the inoculum size was 5% (v/v), and the phase of seed also influenced the fermentation. Among the parameters of pre-culture thus examined, pH was the most important factor.

  • PDF

Optimum Conditions for Production of Fermented Grapefruit Extract using Leuconostoc mesenteroides KCTC3505 (Leuconostoc mesenteroides KCTC3505를 이용한 발효자몽 추출물 생산 조건의 최적화)

  • Hong, Kyung-Pyo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2011
  • This study was conducted in order to determine the optimum conditions for the production of fermented grapefruit extract showing high cell growth, antioxidant activity and total flavonoid content. Five lactic acid bacterial strains - Lactobacillus plantarum KCTC3104, Lactobacillus brevis KCTC3102, Weisella cibaria KCTC3746, Leuconostoc citreum KCTC3526 and Leuconostoc mesenteroides KCTC3505 - were evaluated first in order to determine the optimum strain able to grow with high efficiency on grapefruit as a substrate and possesses higher antioxidant activity and flavonoids content. Among these strains, L. mesenteroides KCTC3505 was selected as a starter culture. To estimate the available or effective content of grapefruit in basal medium, the effects of 30%, 50%, and 70% grapefruit contents on the performance of fermentation were tested, and it was found that grapefruit can be added at 70% levels to medium. In this study, three factors of fermentation conditions - incubation time, sucrose, and glucose contents - were evaluated for their effects on fermentation performance. Taguchi experiment design was employed and the responses of experiments were calculated using signal and noise ratio calculation with larger-the-best characteristics. Finally, the optimum conditions for the manufacture of fermented grapefruit extract were as follows: grapefruit 70%, sucrose 10 g/L, glucose 10 g/L, sodium acetate 1 g/L, NaCl 1 g/L, dipotassium phosphate 0.1 g/L, magnesium sulfate 0.01 g/L and 16 hr of incubation.

Composting of Organic Wastes by solid State Fermentation Reactor (Solid State Fermentation Reactor를 이용한 유기성 폐기물의 발효)

  • 홍운표;이신영
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.311-319
    • /
    • 1999
  • Leaves of Aloe vera Linne and bloods of domestic animal were composted in a soild state fermentation reactor (SSFR) by using microbial additive including a bulking and moisture controlling agent. From solid-culture of microbial additive, 10 species of bacteria and 10 species of fungi were isolated and, their enzyme activities including amylase, carboxy methyl cellulase CMCase, lipase and protease were detected. Optimum fermentation conditions of Aloe leaves and domestic animal bloods in SSFR were obtained from the studies of response surface analysis employing microbial additive content, initial moisture content, and fermentation temperature as the independent variables. The optimum conditions for SSFR using Aloe leaves were obtained at 9.45$\pm$73%(w/w) of microbial additives, 62.73$\pm$4.54%(w/w) of initial moisture content and 55.32$\pm$3.14$^{\circ}C$ of fermentation temperature while those for SSFR using domestic animal bloods were obtained at 10.25$\pm$2.04%, 58.68$\pm$4.97% and 57.85$\pm$5.$65^{\circ}C$, respectively. Composting process in SSFR was initially proceeded through fermentation and solid materials were decomposed within 24 hours by maintaining higher moisture level, and maturing and drying steps are followed later. After the fermentation step, the concentrations of solid phase inorganic components were increased while that of organic components were decreased. Also, concentrations of total organic carbon(TOC), peptides, amino acids, polysaccharides, and low fatty acids in water extracts were increased. As fermentation in composting process depends on initial C/N ratios in water extracts of two samples were increased because of increased water-soluble TOC. From these results, it was revealed that solid state fermentation reactor using microbial additives can be used in composting process of organic wastes with broad C/N ratio.

  • PDF

Monitoring on Alcohol and Acetic acid Fermentation Properties of Muskmelon (참외의 알콜 및 초산발효 특성 모니터링)

  • Lee, Gee-Dong;Kwon, Seung-Hyek;Lee, Myung-Hee;Kim, Suk-Kyung;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • To use overproduction muskmelon effectively, muskmelon vinegar was prepared by two stage fermentations of alcohol and acetic acid. In the alcohol fermentation using muskmelon, alcohol content showed maximum value (7.47%) in $17.83^{\circ}Brix$ of initial sugar concentration and 82.65 h of fermentation time. Acetic acid content in alcohol fermentation revealed minimum value (0.46%) in $12.17^{\circ}Brix$ of initial sugar concentration and 60.56 h of fermentation time. The fermentation conditions for minimum residual sugar were $10.02^{\circ}Brix$ of initial sugar concentration and 105.61 h of fermentation time. The optimum conditions predicted for each corresponding physical properties of acetic acid fermentation were 200 rpm (agitation rate), 250 h (fermentation time) in acetic content and 200 rpm, 150 h in residual alcohol content.

Optimization for the Preparation of Jeung-Pyun, with Added Paecilomyces japonica Powder, Using a Response Surface Methodology (반응표면분석법에 의한 동충하초 첨가 증편 제조의 최적화)

  • 박금순;윤광섭;황성희;조현정;김정숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2003
  • To optimize the preparation process of Jeung-Pyun, an experiment was derived, using a central composite design, to fmd the optimal mixing conditions. The addition of Paecilomyces japonica powder, the volume of Tak-Ju and the second fermentation time were independent variables, with the pH, volume, color, sensory and texture properties of the Jeung-Pyun selected as response variables. As the Paecilomyces japonica powder and fermentation time were increased, the b values and volume after the second fermentation also increased. The color of the Jeung-Pyun became deeper with increases in the Paecilomyces japonica powder and fermentation time, and was deepest on the addition of 30% Tak-Ju. The pH increased with increasing fermentation time of the Jeung-Pyun, and on the addition of 3% Paecilomyces japonica rapidly increased more than with the other groups. The optimal mixing conditions for the best quality Jeung-Pyun, with restricted conditions above a b value of 3, a color intensity above 3, and a volume of 40mQ and a pH of 4.02-4.04 after the second fermentation, were 4.0%, 20% and 45 mins for the Paecilomyces japonica powder, Tak-Ju and second fermentation time, respectively.

Fungi-rice bran based Fermentation of Coptis Chinensis and Curcuma Longa Root and its Influence of Silk Dyeing

  • Park, Young Mi;Choi, Jae Hong
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.635-641
    • /
    • 2013
  • This study examined the dye-properties of natural fabrics dyed with Coptis chinensis and Curcuma longa root fermented with fungi. The optimum culture conditions for the fermentation of microorganisms, the relationship between natural dye color and fermentation conditions were investigated. Two different medical herbs (ground to 80-100 mesh in size) were used as a natural dyeing source. Phellinus linteus (P. linteus), which can grow in different media, such as Agarmedium (only agar containing medium), maltose extract agar (MA) and potato dextrose extract agar (PDA) culture media, were isolated from the medium. P. linteus was confirmed to be the optimum microorganism for the fermentation of Coptis chinensis and Curcuma longa, and the MA medium was confirmed to be the best for culturing. When using the microorganism as the fermenting agent, $32^{\circ}C$ was found to be the optimum fermenting temperature for both natural colorants. Regarding the dyeing property of the fermented natural dye, silk was dyed quite darkly in an appearance by naked eye estimation and the K/S value in the color strength of silk reached a high level of 16 after the fermenting process. The washing fastness of dyed silk after treatment washing was reduced from 4 to under4 and indicates that dyed silk with fermented plant was not unsubstantial. The light fastness was 1 to 2, showing intended to maintain due to the fermentation process.

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

The Conditions Affecting Ethanol Tolerance of Yeast strains in Alcohol Fermantation - Study on the Fermantation Temperature and Substrate Type (알콜발효에서 효모의 에탄올 내성 조건-발효온도와 기질종류에 대한 연구)

  • 김형진;유연우
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • The alcohol fermentation using glucose and lactose was carried out to study the effect of fermentation temperature on the ethanol tolerance of Saccharomyces cerevisiae STV89 and Kluyveromyces fragilis CBS397. The maximum specific growth rate and ethanol production rate were increased up to 35$^{\circ}C$ with the fermentation temperature, although maximum ethanol and cell concentration were decreased by increasing the fermentation temperature. The cell viability was also improved by lowering the fermentation temperature. Under the experimental conditions, the best ethanol tolerance of yeast strains was obtain at $25^{\circ}C$. The ethanol tolerance of S. cerevisiae is better than that of K. fragilis at the same fermentation condition. With respect to the carbon source, glucose is found to be more favorable for ethanol tolerance of K. fragilis than lactos.

  • PDF

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.