• 제목/요약/키워드: feedforward and feedback

검색결과 294건 처리시간 0.025초

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

CMA 알고리즘을 이용한 고속 DFE 등화기 설계 (Design of a High-speed Decision Feedback Equalizer using the Constant-Modulus Algorithm)

  • 전영섭;선우명훈;김경호
    • 대한전자공학회논문지TC
    • /
    • 제39권4호
    • /
    • pp.173-179
    • /
    • 2002
  • 본 논문은 DFE (Decision Feedback Equalizer)구조와 CMA (Constant Modulus Algorithm), 그리고 LMS (Least Mean Square) 알고리즘을 이용한 등화기에 대하여 기술한다. DFE 구조는 기존의 transversal 구조의 등화기에 비하여 빠른 채널 적응 속도와 낮은 BER (Bit Error Rate) 값을 가지며 ISI(Intersymbol Interference)가 심한 환경에서도 좋은 성능을 나타낸다. 본 등화기는 16/64 QAM(Quadrature Amplitude Modulation) 변복조 방식에 적용할 수 있으며, 고속으로 동작할 수 있도록 고속의 곱셈기와 많은 수의 CSA (Carry Save Adder)를 사용하였다. COSSAP/sup TM/ 캐드 툴을 사용하여 부동 소수점 모델과 고정 소수점 모델을 개발하였으며, VHDL 모델을 개발하였다. 시뮬레이션 결과에 따라 feedback 부분과 feedforward 부분에 각각 12개와 8개의 탭을 사용하였으며, 다중 경로 페이딩 채널에서 BER이 10-6일 때를 기준으로 보면 등화기를 사용하지 않은 채널의 BER 보다 SNR(Signal to Noise Ratio)이 4dB 정도 향상되었다. SYNOPSYS/sup TM/ 캐드 툴과 삼성의 0.5 ㎛ standard cell library (STD80) 를 이용하여 로직 합성을 수행하였으며, 전체 게이트 카운트는 약 13만개를 보였다.

Adaptive sliding-mode tracking control in the presence of unmodeled dynamics

  • Cho, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.267-270
    • /
    • 1994
  • To increase the robustness of tile feedforward tracking control system, a new discrete time sliding function has been defined and utilized for the formulation of control law, In adaptive case the robustness is achieved by using both a normalized gradient algorithm with deadzone and a sliding function-based nonlinear feedback, while in nonadaptive case by using only a sliding function-based nonlinear feedback.

  • PDF

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석- (Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method -)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

A general dynamic iterative learning control scheme with high-gain feedback

  • Kuc, Tae-Yong;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1140-1145
    • /
    • 1989
  • A general dynamic iterative learning control scheme is proposed for a class of nonlinear systems. Relying on stabilizing high-gain feedback loop, it is possible to show the existence of Cauchy sequence of feedforward control input error with iteration numbers, which results in a uniform convergance of system state trajectory to the desired one.

  • PDF

승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계 (Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines)

  • 박인석;박영섭;홍승우;정재성;손정원;선우명호
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Design of a Variable Stability Flight Control System

  • Park, Sung-Su;Ko, Joon-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.162-168
    • /
    • 2008
  • A design objective for variable stability flight control system is to develop a controller of in-flight simulation capability that forces the aircraft being flown to follow the dynamics of other aircraft. This paper presents a model-following variable stability control system (VSS) for in-flight simulation which consists of feedforward and feedback control laws, the aircraft dynamic model to be simulated, and switching and fader logics to reduce the transient effect between two aircraft dynamics. The separate design techniques for feedforward and feedback control law proposals are based on model matching and augmented linear quadratic (LQ) techniques. The system allows pilots to select and engage VSS mode, and when deselected, the aircraft reverts to the baseline flight control system. Both the baseline flight control laws and VSS control laws are computed continuously during flight. Initialization of the state values are necessary to prevent instability, since VSS control laws have integrators and filters in longitudinal, and lateral/directional axes. This paper demonstrates and validates the effectiveness and quality of VSS with F-16 models embedded in T-50 in-flight simulation aircraft.

INS/GPS 강결합 기법에 대한 EKF 와 UKF의 성능 비교 (A Performance Comparison of Extended and Unscented Kalman Filters for INS/GPS Tightly Coupled Approach)

  • 김광진;유명종;박영범;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.780-788
    • /
    • 2006
  • This paper deals with INS/GPS tightly coupled integration algorithms using extend Kalman filter (EKF) and unscented Kalman filter (UKF). In the tightly coupled approach, nonlinear pseudorange measurement models are used for the INS/GPS integration Kalman filter. Usually, an EKF is applied for this task, but it may diverge due to poor functional linearization of the nonlinear measurement. The UKF approximates a distribution about the mean using a set of calculated sigma points and achieves an accurate approximation to at least second-order. We introduce the generalized scaled unscented transformation which modifies the sigma points themselves rather than the nonlinear transformation. The generalized scaled method is used to transform the pseudo range measurement of the tightly coupled approach. To compare the performance of the EKF- and UKF-based tightly coupled approach, real van test and simulation have been carried out with feedforward and feedback indirect Kalman filter forms. The results show that the UKF and EKF have an identical performance in case of the feedback filter form, but the superiority of the UKF is demonstrated in case of the feedforward filer form.