• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.028 seconds

Performances of gain-clamped EDFAs with different optical feedback wavelengths for use in WDM networks (WDM네트웍을 위한 광 귀환에 의해 이득이 고정된 EDFA의 귀환 파장에 따른 특성)

  • Kim, Sang-Yong;Chung, Joon;Chae, Cahgn-Joon;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.236-240
    • /
    • 1997
  • We compare feedback wavelength-dependent performances of all-optical gain-clamped 980-nm pumped erbium-doped fiber amplifiers. In a 2.5-Gbps 8-channel WDM system, we have measured and compared gain compressions, signal power variations due to cross-saturation, power penalties caused by relaxation oscillations and noise figures for three different feedback wavelengths - 1532, 1543, and 1565 nm.

  • PDF

PID Autotuning Algorithm with an Asymmetric Self-oscillation (비대칭 자기 진동에 대한 PID 자동동조 알고리듬)

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.128-135
    • /
    • 2002
  • We use the saturation nonlinear feedback element to generate self-oscillation in order to find an ultimate gain and period of linear plant. The use of saturation nonlinear feedback element can improve accuracy of an ultimate gain and period of unknown linear plant. An ultimate gain and period of linear plant can be used to tune a PID controller parameters. It is possible that an asymmetric oscillation can be occurred under the special circumstances such as with static load disturbance. We analyze an asymmetric self-oscillation. As the results of an analysis, we propose a method to find an ultimate gain and period of linear Plant under the asymmetric self-oscillation.

  • PDF

Improved negative capacitance circuit stable with a low gain margin (이득 여유가 작아도 안정한 개선된 네가티브 커패시턴스 회로)

  • 김영필;황인덕
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.68-77
    • /
    • 2003
  • An improved negative capacitance circuit that cancels out input impedance of a front-end in a bioimpedance measurement and operates stably with a low gain margin has been proposed. Since the proposed circuit comprises wide-band operational amplifiers, selecting operational amplifiers is easy, while an operational amplifier of prefer bandwidth should be chosen to apply conventional circuit. Also, since gain margin can be controlled by a feedback resistor connected serially with a feedback capacitor, gain margin is tuneable with a potentiometer. The input impedance of the proposed circuit is two times larger than that of the conventional circuit and 40-times than that without a negative capacitance circuit. Furthermore, closed-loop phase response of the proposed circuit is better than that of the conventional circuit or without a negative capacitance circuit. Above all, for the proposed circuit, the frequency at which a gain peaking occurs is higher than the frequency at which the loop gain becomes a maximum. Thus, the proposed circuit is not affected by a gain peaking and can be operated with a very low gain margin.

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF

Mixed $H_2/H_{\infty}$ Control of Two-wheel Mobile Robot

  • Roh, Chi-Won;Lee, Ja-Sung;Lee, Kwang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.438-443
    • /
    • 2003
  • In this paper, we propose a control algorithm for two-wheel mobile robot that can move the rider to his or her command and autonomously keep its balance. The control algorithm is based on a mixed $H_2/H_{\infty}$ control scheme. In this control problem the main issue is to move the rider while keeping its balance in the presence of disturbances and parameter uncertainties. The disturbance force caused by uneven road surfaces and the uncertainty due to different rider's heights are considered. To this end we first consider a state feedback controller as a basic framework. Secondly, we obtain the state feedback gain $K_2$ minimizing the $H_2$ norm and the state feedback gain $K_{\infty}$ minimizing the $H_{\infty}$ norm over the whole range of parameter uncertainty. Finally, we select mixed $H_2$/$H_{\infty}$ state feedback controller K as the geometric mean of $K_2$ and $K_{\infty}$. Simulation results show that the mixed $H_2/H_{\infty}$ state feedback controller combines the effects of the optimal $H_2$ state feedback controller and robust $H_{\infty}$ controller state feedback controller efficiently in the presence of disturbance and parameter uncertainty.

  • PDF

Sinusoidal A Study on the gain Stability of the Feedback Linear Pulse Amplifiers for Fast Pulse Input (금속펄스 선형증폭기의 빠른 입력펄스에 대한 이득안정도에 관한 연구)

  • 이병선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.1-14
    • /
    • 1974
  • The gain stability of the nuclear pulse linear amplifiers with feedback for such a fast pulse input as the step voltage or the nuclear radiation detector pulse is analysed in detail. The expression is derived which describes the waveform at the anode circuit of the photomultiplier tube which is a part of the nuclear radiation detector. It is analysed and compared when the feedback amplifier has one and two time-constants. When these fast input pulse voltages are applied to the feedback amplifier, the effects of feedback in linearity and stability of the output voltage appear only after two or three rise-times of the amplifier, And it is proved that in order to reduce this limitation, the rise time of the feedback amplifier shou1d be less than the input pulse width. It is also shown that the above theory can be applied directly to the voltage-shunt feedback amplifier stages designed as the basic amplifier of the linear amplifier, and that the gain stability is more improved for the smaller input impedance of this amplifier stage.

  • PDF

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.

Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit (헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석)

  • Yang, Chang Deok;Lee, Seung Deok;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2020
  • The use of a high gain flight control system to achieve high bandwidth performance increase the instability of a helicopter. To investigate these phenomena numerically, high fidelity EC155B1 helicopter model and simplified flight control system that include actuator, digital processor and noise rejection filter was developed. A study conducts an analytical investigation of roll axis stability of the helicopter model as feedback gain increases. And this study analyzes roll-rate and roll-attitude feedback gains limited by rotor flap mode. The results indicate that the phase delays caused by the filter can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

The Design of Ultra-broadband Power Amplifier using a Negative Feedback (부궤환을 이용한 광대역 전력증폭기 설계)

  • Lee, Han-Young;Kim, Dae-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1572-1579
    • /
    • 2009
  • In this dissertation ultra-broadband power amplifier(UPA) was designed and fabricated using negative feedback technique. UPA was made of pre-amplifier, drive amplifier and power amplifier. Negative feedback technique was used to achieve ultra-broadband performance. Designed power amplifier has 30dB gain and 2W output power. The load-pull data of power amplifier for optimal power matching was extracted from the measured S-parameter. Fabricated PCB material, permittivity is 4.6 and thickness is 0.8mm, is FR4 and UPA was fabricated 3 modules for comparison of the simulated and measured results. Size of the fabricated pre-amplifier and drive amplifier module is 40mm'50mm'16mm. And from the experimental results, gain of the pre-amplifier module is 9.87dB at 2GHz and flatness is 0.63dB. Experimental result of the drive amplifier module is 10.97dB at 2GHz and flatness of that is 0.26dB. Test result of the power amplifier module is 10.71dB at 2GHz and flatness is 0.72dB. Total size of the power amplifier is 45mm'134mm'16mm. According to the test results, gain of the UPA is 28.98dB at 2GHz and flatness is 1.68dB. Output power was 32.098dBm at 2GHz, 32.154dBm at 1GHz and 31.273dBm at 100MHz.

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.