• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.038 seconds

CURRENT-CONTROLLED PWM-RECTIFIER WITH di/dt FEEDBACK/VOLTAGE-SOURCE INVERTER WITHOUT DC LINK COMPONENTS FOR INDUCTION MOTOR DRIVE

  • Iimori, Kenichi;Shinohara, Katsuji;Muroya, Mitsuhiro;Kitanaka, Hidetoshi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.524-528
    • /
    • 1998
  • The voltage-source inverters are normally equipped with an electrolytic capacitor in their DC link, however, the electrolytic capacitor has several disadvantages such as increasing size, limiting converter life and reliability. Therefore, several approaches for removing the DC link capacitor have been studied by the authors. This paper proposes a new voltage-source inverter without DC link components. To reduce waveform distortion of the AC source current, the current-controlled PWM-rectifier with di/dt feedback is introduced. The di/dt feedback gain and LC parameters are investigated by calculation for a 0.75kW induction motor driven by this inverter. The calculated AC source currents maintain nearly sinusoidal waveforms with a unity power factor.

  • PDF

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF

External Feedback Effects on the Relative Intensity Noise Characteristics of InAIGaN Blue Laser Diodes

  • Cho Hyung-Uk;Yi Jong-Chang
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.86-90
    • /
    • 2006
  • The external feedback effect on the relative intensity noise (RIN) characteristics of blue InAlGaN laser diode has been analyzed taking into account the spontaneous emission noise and the injection current for the high frequency modulation. A Langevin diffusion model was exploited to characterize its relative intensity noise. The simulation parameters were quantitatively evaluated from the optical gain properties of the InAlGaN multiple quantum well active regions by using the multiband Hamiltonian for the strained wurtzite crystals. The extracted parameters were then applied to the rate equations taking into account the external feedback and the high frequency modulation current. The RIN characteristics were investigated to optimize the low frequency laser diode noise characteristics.

Nonlinear Feedback Linearization-Full Order Observer/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to obtain smmoth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO)and eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF

State Feedback-Based Position Controller of VCM(Voice Coil Motor) for Precise Automated Manufacturing Process (조립구동용 VCM 정밀구동을 위한 상태궤환 방식의 위치제어기)

  • Kim, Sung-Kuk;Rajendra, Shrestha;Seok, Jul-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.129-135
    • /
    • 2010
  • The state feedback-based position controller for the voice coil motor(VCM) used in precise automated manufacturing processes is proposed and analyzed in this paper. The proposed controller has advantage over the conventional cascade-type P-PI controller in terms of the gain selection and the controller interference. The feasibility of the presented idea is verified by experimental results on a designed VCM.

The stability analysis of current mode controller considering feedback element (피드백 요소를 고려한 전류모드 제어기의 안정도해석)

  • Kim, Cherl-Jin;Song, Yo-Chang;Jin, Young-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.239-241
    • /
    • 2001
  • Recently the power supply equipments have tendency to take multiple feedback loop paths. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the gurantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test results. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency $f_c$, is nearly 1/5 of switching frequency $f_s$, from the experimental result with frequency response analyzer.

  • PDF

A Study on Feedback Control and Development of chaotic Analysis Simulator for Chaotic Nonlinear Dynamic Systems (Chaotic 비선형 동역학 시스템의 Chaotic 현상 분석 시뮬레이터의 개발과 궤환제어에 관한 연구)

  • Kim, Jeong-D.;Jung, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.407-410
    • /
    • 1996
  • In this Paper, we propose the feedback method having neural network to control the chaotic signals to periodic signals. This controller has very simple structure, it is immune to small parameter variations, the precise access to system parameters is not required and it is possible to follow ones of its inherent periodic orbits or the desired orbits without error, The controller consist of linear feedback gain and neural network. The learning of neural network is achieved by error-backpropagation algorithm. To prove and analyze the proposed method, we construct a software tool using c-language.

  • PDF

Gain Optimization by Using Genetic Algorithm for Magnetic Levitation Controller (유전 알고리즘을 이용한 자기부상 제어기의 게인 최적화)

  • Kim, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1327-1329
    • /
    • 2005
  • This paper presents a gam optimization method using genetic algorithm(GA) for a magnetic levitation(Maglev) controller. GA uses the integral of square error(ISE) as performance index. The plant dynamics are described and modelled by mathematical equations. Also, the system apparatus for the Maglev system are described. Using the derived model, to optimize the feedback gains of conventional state feedback controller(SFC), GA is simulated with SIMULINK model. finally, using the optimized feedback gains, SFC is applied to the Maglev system. From the results, we can see that GA can give a solution for the better control performance for the Maglev system.

  • PDF

Elastodynamic Control of Industrial Robotic Manipulators Using Piezoelectric Materials (압전재료를 이용한 산업용 로보트 매니퓰레이터의 동탄성 제어)

  • Choi, S.B.;Cheong, C.C.;Choi, I.S.;Lee, T.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.54-63
    • /
    • 1993
  • This paper presents the dynamic modeling and control methodology to arrest structural deflections of industrial robotic manipulators featuring elastic members retrofitted with surface bonded pizoelectric actuators and sensors. The cynamic modeling is accomplished by employing a variational theorem, prior to developing a finite element formulation. This finite element formulation accounts for both original robot member elements and also bonded piezoelectric material elements. The governing equation of motion is then modified by condensing the electric potential vectors and subsequently two different negative velocity feedback controllers are established; a constant-gain feedback controller and a constant- amplitude feedback controller. By adopting a Model P50 articulating industrial robot manufactured by Gerneral Electric Company, conputer simulations are underlaken in order to demonstrate superior performance characteristics to be accrued from this proposed methodology such as smaller deflections at the end-effector.

  • PDF

Limited Feedback Interference Alignment in MIMO Power Line Communication with Common-mode Reception

  • Ahiadormey, Roger Kwao;Anokye, Prince;Park, Seok-Hwan;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This paper considers a multiple-input multiple-output (MIMO) power line communication (PLC) network where interference alignment (IA) technique is used to mitigate the interference that arises in multi-user networks. IA as a precoding technique requires perfect channel state information (CSI) to achieve maximum multiplexing gain. Due to the common-mode reception at the receiver ports, we assume imperfect CSI for the IA precoding design. Here, the CSI is quantized and sent via feedback to the transmit ports. For different levels of CSI quantization, we evaluate the performance of various IA algorithms via Monte Carlo simulations. Simulation results reveal the superior performance of the proposed scheme due to common-mode reception in IA MIMO PLC networks. It is shown that for a quantization level of 5 bits, the CM reception improves the sum-rate by up to 70%.