• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.039 seconds

Robust High Gain Adaptive Output Feedback Tracking Control for Nonlinear Systems

  • Kohara, Koshiro;Mizumoto, Ikuro;Iwai, Zenta;Michino, Ryuji;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.444-444
    • /
    • 2000
  • For a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP), it is well known that one can easily design a high-gain output feedback control system. The designed high-gain controller has simple structure and high robustness. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper. we deal with a design problem of the robust high-gain adaptive output feedback control for the above-mentioned class of nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Shim, Kyu-Hong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.4-34
    • /
    • 2001
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP). The designed high gain adaptive controller has simple structure and high robustness with regard to bounded disterbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we deal with a design problem of the robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Impact of Optical Filter Bandwidth on Performance of All-optical Automatic Gain-controlled Erbium-doped Fiber Amplifiers

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.472-476
    • /
    • 2020
  • We have investigated the impact of optical filter bandwidth on the performance of all-optical automatic gain-controlled (AGC) erbium-doped fiber amplifiers (EDFAs). In principle, an optical bandpass filter (OBPF) should be placed within the feedback gain-clamping loop to set the lasing wavelength as well as the passband of the feedback amplified spontaneous emission (ASE) in all-optical AGC EDFA. From our measurement results, we found that the power level of feedback ASE with 0.1 nm passband of the optical filter was smaller than the ones with >0.2 nm passband cases. Therefore, the peak-to-peak power variation of the surviving channel with 0.1 nm passband was much larger than the ones with >0.2 nm passband. In addition, no significant difference in the power level of the feedback ASE was observed when the passband of the optical filter was ranging from 0.2 nm to 4.5 nm in our measurements. From these results, we have concluded that the passband of the optical filter should be slightly larger than 0.2 nm by taking into account the effect of feedback ASE power and the efficient use of the EDFA gain spectrum for the lasing ASE peak.

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

A design of variable gain amplifier for wireless LAN (무선 LAN을 위한 가변이득 증폭기의 설계)

  • 송용원;이재웅;김건욱;박한규
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.873-876
    • /
    • 1999
  • A variable gain amplifier(VGA) for wireless LAN is designed using active feedback. The amplifier is controlled by the gate voltage in the feedback path. This amplifier has more than 30㏈ gain variation and a improved linearity in the RF receiver block as input voltage increases. An active feedback topology is used by P-HEMT and is also analyzed for FET equivalent model.

  • PDF

Human Postural Response to Linear Perturbation (선형외란에 대응하는 인체의 자세응답 해석)

  • Kim, Se-Young;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

Stabilization and $H_\infty$ control of linear systems with static output feedback (상수 출력궤환 선형 시스템의 안정화 및 $H_\infty$ 제어기 설계)

  • Kim, Hyeong-Jin;Kim, Myeong-Soon;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.111-114
    • /
    • 2003
  • In this paper, we consider the stabilization and $H_\infty$ control of linear systems with static output feedback control. The static output feedback control represents the simplest closed-loop control that can be realized in practice, and, moreover, it is less expensive to be implemented and is more reliable. In spite of its advantages, it is one of the open problems which is not sloved analytically or numerically yet. After decompose the closed-loop system into feedback form, by adopting the small gain theorem, we obtain a sufficient condition for stabilization and a sufficient condition for It control expressed as linear matrix inequalites. Finally, we show the usefulness of our results by a numerical example.

  • PDF

Design of Variable Gain Low Noise Amplifier with Memory Effects Feedback for 5.2 GHz Band (5.2 GHz 대역에서 동작하는 기억 기능 특성을 갖는 궤환 회로를 이용한 변환 이득 저잡음 증폭기 설계)

  • Lee, Won-Tae;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper presents a novel gain control system composed of a feedback circuit, Two stage Low Noise Amplifier (LNA) using 0.18 um CMOS technology for 5.2 GHz. The feedback circuit consists of the seven function blocks: peak detector, comparator, ADC, IVE(Initial Voltage Elimination) circuit, switch, storage, and current controller. We focus on detecting signal and designing storage circuit that store the previous state. The power consumption of the feedback circuit in the system can be reduced without sacrificing the gain by inserting the storage circuit. The adaptive front-end system with the feedback circuit exhibits 11.39~22.74 dB gain, and has excellent noise performance at high gain mode. Variable gain LNA consumes 5.68~6.75 mW from a 1.8 V supply voltage.

Considerations on High-gain Control of Feedback Linearizable Systems (궤환 선형화된 비선형 시스템의 고이득 제어기에 대한 고찰)

  • Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1137-1139
    • /
    • 1996
  • Feedback Linearization technique needs the exact cancellation of nonlinearity which restricts its application to real environment. To overcome these shortcomings, High-pin feedback is good remedy to this problem. In this paper, we briefly survey the high-gain feedback control technique and show some conditions for applying this method to nonlinear systems. In order to use this technique in real situation, some properties of ${\varepsilon}$-bound and semi-global stabilization are discussed.

  • PDF