• Title/Summary/Keyword: feedback cancellation

Search Result 131, Processing Time 0.025 seconds

Transmit Antenna Selection for Spatial Multiplexing with Per Antenna Rate Control and Successive Interference Cancellation (순차적인 간섭제거를 사용하는 공간 다중화 전송 MIMO 시스템의 전송 안테나 선택 방법에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.560-569
    • /
    • 2005
  • This paper proposes an algorithm for transmit antenna selection in a multi-input multi-output(MIMO) spatial multiplexing system with per antenna rate control(PARC) and an ordered successive interference cancellation (OSIC) receiver. The active antenna subset is determined at the receiver and conveyed to the transmitter using feedback information on transmission rate per antenna. We propose a serial decision procedure consisting of a successive process that tests whether antenna selection gain exists when the antenna with the lowest pre-processing signal to interference and noise ratio(SINR) is discarded at each stage. Furthermore, we show that 'reverse detection ordering', whereby the signal with the lowest SINR is decoded at each stage of successive decoding, widens the disparities among fractions of the whole capacity allocated to each individual antenna and thus maximizes a gain of antenna selection. Numerical results show that the proposed reverse detection ordering based serial antenna selection approaches the closed-loop MIMO capacity and that it induces a negligible capacity loss compared with the heuristic selection strategy even with considerably reduced complexity.

Acoustic Echo Cancellation Based on Convolutive Blind Signal Separation Method (Convolutive 암묵신호분리방법에 기반한 음향반향 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.979-986
    • /
    • 2018
  • This paper deals with acoustic echo cancellation using blind signal separation method. This method does not degrade the echo cancellation performance even during double-talk. In the closed echo environment, the mixing model of acoustic signals is multi-channel, so the convolutive blind signal separation method is applied and the mixing coefficients are calculated by using the feedback model without directly calculating the separation coefficients for signal separation. The coefficient update is performed by iterative calculations based on the second-order statistical properties, thus estimates the near-end speech. A number of simulations have been performed to verify the performance of the proposed blind signal separation method. The simulation results show that the acoustic echo canceller using this method operates safely regardless of the presence of double-talk, and the PESQ is improved by 0.6 point compared with the general adaptive FIR filter structure.

Adaptive Channel Estimation and Decision Directed Noise Cancellation in the Frequency Domain Considering ICI of Digital on Channel Repeater in the T-DMB (T-DMB 동일 채널 중계기의 주파수 영역에서 ICI를 고려한 적응형 채널 추정과 결정지향 잡음 제거)

  • Kim, Gi-Young;Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • Recently, many papers have been proposed in order to improve the OFDM system performance in T-DMB DOCR (Digital On Channel Repeater), by using removing the feedback signal so that the transmitter power can be increased or by using the equalizer to remove ICI. Despite these efforts, however, signal quality at the receiving terminal has not been improved because of constellation smearing in T-DMB DOCR. In this paper, in order to suppress constellation smearing, we propose an effective equalizer algorithm that can improve system performance. We perform adaptive channel estimation and non-coherent decision directed noise cancellation method that can estimate the channel subsequently during data symbols period in the frequency domain. So we can obtain better quality of the signal at the receiving terminal. In order to secure QoS(Quality of Service) required in T-DMB handsets, we evaluate SNR and BER in T-DMB DOCR(Digital On Channel Repeater) and verified by simulation. In this simulation results, this system is satisfied the performance of BER=$10^{-5}$ at less than SNR=14 dB at the receiver after compensation of phase noise -18 dBc.

Adaptive Feedback Interference Cancellation Using Correlations for WCDMA Wireless Repeaters (WCDMA용 무선중계기에서 상관도를 이용한 적응적 궤환 간섭 제거)

  • Moon, Woo-Sik;Im, Sung-Bin;Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.35-40
    • /
    • 2007
  • As the mobile communication service is widely used and the demand for wireless repeaters is rapidly increasing because of the easiness of extending service areas. But a wireless repeater has a problem that the output of the transmit antenna is partially fed back to the receive antenna, which results in feedback interference. In this paper, we propose a new varable step-size LMS algorithm which utilizes correlation between reference and error signals to adjust the step sizes, for cancelling the feedback interference signals in the WCDMA repeater under time-varying multi-path channels. The proposed algorithm was evaluated through computer simualation by being applied to the feedback canceling filter of the WCDMA repeater. The simulation results demonstrated that the proposed one is superior to the conventional ones in terms of the cancelation perormance.

An FPGA Implementation of an MML-DFE for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 MML-DFE기법의 FPGA 구현)

  • Im, Tae-Ho;Lee, Kyu-In;Park, Chang-Hwan;Jeong, Ki-Cheol;Yu, Sung-Wook;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1167-1175
    • /
    • 2006
  • The ML-DFE(Maximum Likelihood-Decision Feedback Equalization) can be viewed as either a suboptimal signal detection method for reducing hardware complexity of ML or an enhanced detection method for reducing the effect of error propagation of SIC(Successive Interference Cancellation) in spatially multiplexed MIMO systems such as V-BLAST. The ML-DFE can achieve a higher diversity in rich scattering environments as well as reducing the error propagation effect by combing ML decoding with the DFE. In this paper, an MML-DFE(Modified Maximum Likelihood-Decision Feedback Equalization) is proposed to reduce the hardware complexity of the ML-DFE, without compromising performance. It is shown by FPGA implementation that the proposed MML-DFE can achieve the same performance as the ML-DFE with significantly reduced hardware complexity.

A BLMS Adaptive Receiver for Direct-Sequence Code Division Multiple Access Systems

  • Hamouda Walaa;McLane Peter J.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.243-247
    • /
    • 2005
  • We propose an efficient block least-mean-square (BLMS) adaptive algorithm, in conjunction with error control coding, for direct-sequence code division multiple access (DS-CDMA) systems. The proposed adaptive receiver incorporates decision feedback detection and channel encoding in order to improve the performance of the standard LMS algorithm in convolutionally coded systems. The BLMS algorithm involves two modes of operation: (i) The training mode where an uncoded training sequence is used for initial filter tap-weights adaptation, and (ii) the decision-directed where the filter weights are adapted, using the BLMS algorithm, after decoding/encoding operation. It is shown that the proposed adaptive receiver structure is able to compensate for the signal-to­noise ratio (SNR) loss incurred due to the switching from uncoded training mode to coded decision-directed mode. Our results show that by using the proposed adaptive receiver (with decision feed­back block adaptation) one can achieve a much better performance than both the coded LMS with no decision feedback employed. The convergence behavior of the proposed BLMS receiver is simulated and compared to the standard LMS with and without channel coding. We also examine the steady-state bit-error rate (BER) performance of the proposed adaptive BLMS and standard LMS, both with convolutional coding, where we show that the former is more superior than the latter especially at large SNRs ($SNR\;\geq\;9\;dB$).

Robust Decision Feedback Equalizer for OFDM System under Severe ISI Channel

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1914-1925
    • /
    • 2014
  • Inter-symbol interference (ISI) problem is inevitable when the guard interval (GI) is shorter than the delay spread (DS) for an orthogonal frequency division multiplexing (OFDM) system. Iterative techniques have been proposed to overcome such a problem. However, most of existing algorithms are not efficient for an OFDM system with a small GI working under the channel with a large DS. Especially in the case of the DS spans a longer time than the half of the OFDM symbol duration. On the other hand, conventional algorithms, which can reduce the effects of the severe ISI, often employ several impractical assumptions to support the conclusions. In this paper, we present a robust decision feedback equalizer (DFE) for the OFDM system to overcome the severe ISI problem. The proposed DFE removes the ISI in a same manner as the residual inter-symbol interference cancellation (RISIC) algorithm. However, the inter-carrier interference (ICI) is reduced via cyclicity removal instead of the cyclicity restoration used in the conventional algorithms. The link-level simulation (LLS) results indicate that our proposed DFE scheme can dramatically improve the BER performance when the DS spans longer than the half of ODFM symbol duration.

Channel and Nonlinear Element Estimation Technique for Self - Interference Cancellation in DOCSIS 3.1 System with Full Duplex (전이중 통신기반 DOCSIS 3.1 시스템에서 자기간섭제거를 위한 채널 및 비선형왜곡 추정 기술 연구)

  • Baek, Myung-Sun;Cho, Yong-Sung;Jung, Jun-Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.28-30
    • /
    • 2018
  • 본 논문에서는 전이중 통신 방식을 사용하는 DOCSIS 3.1 시스템의 자기간섭 제거를 위한 자기간섭신호의 채널 및 비선형 왜곡 요소를 추정하는 기술을 제안한다. DOCSIS 3.1 시스템의 전이중 통신 방식은 일반적으로 가입자 단말인 CM (Cable Modem) 과 케이블방송신호 송신 시스템인 CMTS (Cable Modem Termination System) 사이의 상하향 통신을 시간/주파수의 분할 없이 동시에 수행하는 통신 방식이다. CMTS 에서 CM 의 신호를 수신함과 동시에 CMTS 신호를 송신하는 경우 고출력의 CMTS 송출신호가 CMTS 의 수신기로 인가되는 자기간섭 현상이 발생하게 된다. 이렇게 인가되는 자기간섭신호는 고출력 증폭기 (HPA: High - Power Amplifier) 및 Feedback 채널의 영향으로 크게 왜곡되어 수신된다. 따라서 자기간섭신호를 제거하고 CM 의 신호를 원활하게 복조하기 위해서는 자기간섭신호의 왜곡 요소룰 추정 및 보상하는 절차가 반드시 필요하다. 본 논문에서는 자기간섭신호의 HPA 에서 발생하는 비선형 왜곡 요소 및 Feedback 채널의 영향으로 발생하는 채널 요소를 추정하는 기술을 제안하고 성능을 분석한다. 제안된 기술은 간단한 연산기반으로 왜곡요소의 추정이 가능하며 반복추정을 통해 성능을 효과적으로 향상시키는 것이 가능하다.

  • PDF

A Study on the Narrow-band Interference Rejection in DS Spread-spectrum Systems (DS 스펙트럼 확산 시스템의 협대역 간섭 제거에 관한 연구)

  • 라상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1994-2000
    • /
    • 1993
  • A new lattice structure using decision feedback and augmented prediction for estimating and suppressing the narrowband interference is presented. The performance of the proposed interference canceller is compared to the conventional interference cancellation filter. The reference signal of the interference canceller is formed by using the chip decisions, which is correlated with the narrowband interference components of the received signal. The decision feedback technique reduce the distortion of the desired signal which is introduced by the interference canceller through the use of feedback chip decisions. And by linear prediction of the error signal, the residual interference component of can be eliminated, Using this unconteminated error signal to update the adaptive filter coefficients, the performance of the rejection can be improved. In the simulation, it is assumed that the processing gains are 7 and 15, signal to interference ratio is -10[dB], and 5% interference band. The results show that the BER performance of the proposed filter structure is improved by 1~3dB.

  • PDF

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.