• Title/Summary/Keyword: feature-based model exchange

Search Result 28, Processing Time 0.024 seconds

An OSI and SN Based Persistent Naming Approach for Parametric CAD Model Exchange (기하공간정보(OSI)와 병합정보(SN)을 이용한 고유 명칭 방법)

  • Han S.H.;Mun D.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 2006
  • The exchange of parameterized feature-based CAD models is important for product data sharing among different organizations and automation systems. The role of feature-based modeling is to gonerate the shape of product and capture design intends In a CAD system. A feature is generated by referring to topological entities in a solid. Identifying referenced topological entities of a feature is essential for exchanging feature-based CAD models through a neutral format. If the CAD data contains the modification history in addition to the construction history, a matching mechanism is also required to find the same entity in the new model (post-edit model) corresponding to the entity in the old model (preedit model). This problem is known as the persistent naming problem. There are additional problems arising from the exchange of parameterized feature-based CAD models. Authors have analyzed previous studies with regard to persistent naming and characteristics for the exchange of parameterized feature-based CAD models, and propose a solution to the persistent naming problem. This solution is comprised of two parts: (a) naming of topological entities based on the object spore information (OSI) and secondary name (SN); and (b) name matching under the proposed naming.

The Exchange of Feature Data Among CAD Systems Using XML (CAD 시스템간의 형상정보 교환을 위한 XML 이용에 관한 연구)

  • 박승현;최의성;정태형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.30-36
    • /
    • 2004
  • The exchange of model design data among heterogeneous CAD systems is very difficult because each CAD system has different data structures suitable for its own functions. STEP represents product information in a common computer-interpretable form that is required to remain complete and consistent when the product information is needed to be exchanged among different computer systems. However, STEP has complex architecture to represent point, line, curve and vectors of element. Moreover it can't represent geometry data of feature based models. In this study, a structure of XML document that represents geometry data of feature based models as neutral format has been developed. To use the developed XML document, a converter also has been developed to exchange modules so that it can exchange feature based data models among heterogeneous CAD systems. Developed XML document and Converter have been applied to commercial CAD systems.

Integration of History-based Parametric CAD Model Translators Using Automation API (오토메이션 API를 사용한 설계 이력 기반 파라메트릭 CAD 모델 번역기의 통합)

  • Kim B.;Han S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • As collaborative design and configuration design are of increasing importance in product development, it becomes essential to exchange the feature and parametric CAD models among participants. A history-based parametric method has been proposed and implemented. But each translator which exchanges the feature and parametric information tends to be heavy because to implement duplicated functions such as the identification of the selected geometries, mapping between features which have different attributes. Furthermore. because the history-based parametric translator uses the procedural model as the neutral format, which is the XML macro file, the history-based parametric translators need a geometric modeling kernel to generate an internal explicit geometric model. To ease the problem, we implemented a shared integration platform, the TransCAD. The TransCAD separates translators from the XML macro files. The translators for various CAD systems need to communicate with only the TransCAD. To support the communication with the TransCAD, we exposed the functions of the TransCAD by using the Automation APIs, which is developed by Microsoft. The Automation APIs of the TransCAD consist of the part modeling functions, the data extraction functions, and the utility functions. Each translator uses these functions to translate a parametric CAD model from the sending CAD system into the XML format, or from the in format into the model of the receiving CAD system This paper introduces what the TransCAD is and how it works for the exchange of the feature and parametric models.

The Exchage of Feature Data Among CAD System Using XML (XML을 이용한 CAD 시스템간의 형상정보 교환)

  • 정태형;최의성;박승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.434-440
    • /
    • 2003
  • The exchange of model design date among heterogeneous CAD systems is a difficult task because each system has different data structures suitable for its own functions. STEP has been able to represent product information as a common computer-interpretable form that is required to remain complete and consistent when the product informant is needed to be exchanged among different computer system. However, STEP has difficult architecture in is representing point, line, curve and vectors of element, more over it can't represent geometry data of feature based models. In this study, a structure of XML document that represents geometry data of feature based models as neutral format has been developed. To use the developed XML document, a Converter has also been developed to exchange modules so that it can exchange feature based data models among heterogeneous CAD systems. Aa for evaluation of the developed XML document and Converter, Solidworks and SolidEdge are selected.

  • PDF

Stepwise Volume Decomposition Considering Design Feature Recognition (설계 특징형상 인식을 고려한 단계적 볼륨 분해)

  • Kim, Byung Chul;Kim, Ikjune;Han, Soonhung;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-82
    • /
    • 2013
  • To modify product design easily, modern CAD systems adopt the feature-based model as their primary representation. On the other hand, the boundary representation (B-rep) model is used as their secondary representation. IGES and STEP AP203 edition 1 are the representative standard formats for the exchange of CAD files. Unfortunately, both of them only support the B-rep model. As a result, feature data are lost during the CAD file exchange based on these standards. Loss of feature data causes the difficulty of CAD model modification and prevents the transfer of design intent. To resolve this problem, a tool for recognizing design features from a B-rep model and then reconstructing a feature-based model with the recognized features should be developed. As the first part of this research, this paper presents a method for decomposing a B-rep model into simple volumes suitable for design feature recognition. The results of experiments with a prototype system are analyzed. From the analysis, future research issues are suggested.

Sharing CAD Models Based on Feature Ontology of Commands History

  • Seo, Tae-Sul;Lee, Yoon-Sook;Cheon, Sang-Uk;Han, Soon-Hung;Patil, Lalit;Dutta, Debasish
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • Different CAx systems are being utilized throughout the product lifecycle due to the practical reasons in the supply chain and design processes. One of the major problems facing enterprises of today is how to share and exchange data among heterogeneous applications. Since different software applications use different terminologies, it is difficult to share and exchange the product data with internal and external partners. This paper presents a method to enhance the CAD model interoperability based on feature ontology. The feature ontology has been constructed based on the feature definition of modeling commands of CAD systems. A method for integration of semantic data has been proposed, implemented, and tested with two commercial CAD systems.

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

A Hybrid Parametric Translator Using the Feature Tree and the Macro File (피처 트리와 매크로 파일을 이용하는 하이브리드 파라메트릭 번역기)

  • 문두환;김병철;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.240-247
    • /
    • 2002
  • Most commercial CAD systems provide parametric modeling functions, and by using these capabilities designers can edit a CAD model in order to create design variants. It is necessary to transfer parametric information during a CAD model exchange to modify the model inside the receiving system. However, it is not possible to exchange parametric information of CAD models based on the cur-rent version of STEP. The designer intents which are contained in the parametric information can be lost during the STEP transfer of CAD models. This paper introduces a hybrid CAB model translator, which also uses the feature tree of commercial CAD systems in addition to the macro file to allow transfer of parametric information. The macro-parametric approach is to exchange CAD models by using the macro file, which contains the history of user commands. To exchange CAD models using the macro-parametric approach, the modeling commands of several commercial CAD systems are analyzed. Those commands are classified and a set of standard modeling commands has been defined. As a neutral fie format, a set of standard modeling commands has been defined. Mapping relations between the standard modeling commands set and the native modeling commands set of commercial CAD systems are defined. The scope of the current version is limited to parts modeling and assemblies are excluded.

Development of Feature Based Modeller Using Boundary Representation (경계표현법을 기본으로 한 특징형상 모델러의 개발)

  • 홍상훈;서효원;이상조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2446-2456
    • /
    • 1993
  • By virtue of progress of computer science, CAD/CAM technology has been developed greatly in each area. But the problems in the integration of CAD/CAM are not yet solved completely. The reason is that the exchange of data between CAD and CAM is difficult because the domains of design and manufacturing are different in nature. To solve this problem, a feature based modeller is developed in this study, which makes it possible to communicate between design and manufacturing through features. The modeller has feature, the concept of semi-bounded plane is introduced, and implemented as a B-rep sheet model using half-edge data structure. The features are then created on a part by local modification of the boundary on a part based on feature template information. This approach generalizes the modelling of features in a geometry model.

An Approach to Persistent Naming and Naming Mapping Based on OSI and IGM for Parametric CAD Model Exchanges (파라메트릭 CAD모델 교환을 위한 OSI와 IGM기반의 고유 명칭 방법과 명칭 매핑 방법)

  • Mun D.H.;Han S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.226-237
    • /
    • 2004
  • If the topology changes in the re-generation step of the history-based and feature-based CAD systems, it is difficult to identify an entity in the old model and find the same entity in the new model. This problem is known as 'persistent naming problem'. To exchange parametric CAD models, the persistent naming problem and the naming mapping problem must be solved among different CAD system, which use different naming scheme. For CAD model exchange the persistent naming has its own characteristics compare to that for CAD system development. This paper analyses previous researches and proposes a solution to the persistent naming problem for CAD model exchanges and to the naming mapping problem among different naming schemes.