• Title/Summary/Keyword: feature space

Search Result 1,365, Processing Time 0.028 seconds

Real-Time Face Avatar Creation and Warping Algorithm Using Local Mean Method and Facial Feature Point Detection

  • Lee, Eung-Joo;Wei, Li
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.777-786
    • /
    • 2008
  • Human face avatar is important information in nowadays, such as describing real people in virtual world. In this paper, we have presented a face avatar creation and warping algorithm by using face feature analysis method, in order to detect face feature, we utilized local mean method based on facial feature appearance and face geometric information. Then detect facial candidates by using it's character in $YC_bC_r$ color space. Meanwhile, we also defined the rules which are based on face geometric information to limit searching range. For analyzing face feature, we used face feature points to describe their feature, and analyzed geometry relationship of these feature points to create the face avatar. Then we have carried out simulation on PC and embed mobile device such as PDA and mobile phone to evaluate efficiency of the proposed algorithm. From the simulation results, we can confirm that our proposed algorithm will have an outstanding performance and it's execution speed can also be acceptable.

  • PDF

A study of Monolithic Design and Contemporary Architecture Space Constitution (모놀리틱디자인과 현대건축공간구성에 관한 연구)

  • Kim, Jun-Ho;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2017
  • In today's society, Monolithic expresses itself as a single featured work with a consistent exterior in the urban environment. In particular, such characteristics of the monolithic work have become increasingly influential in the modern society with the emergence of the minimalism. Monolithic architecture in modern has common feature which is maintaining simple construction format (Mass) with complicated and abundance space (Volume) inside. This simple architecture exterior leads new stimulus which is different from previous format and evokes unique sensibility and thoughts with monumental expressing. Uniformed exterior revealed thru purity of material builds up strong presence by itself. In contract with simple exterior, diverse space is expressed by consistent concept and process. Through this, it shows creating metaphorical space and space-oriented feature. We can interpret modern monolithic architecture as a sensation and alternative against Gestalt architecture in consequence of chasing clarity, visual stimulus and uncertain tendency only. It provides architectural experience by spatial imaginary and unexpected space development to users through exclusivetendency against outside and stressing un-private, we can evaluate its value as a space-oriented construction which helped us to think about space meaning in modern society.

A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System (심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구)

  • Lim, Seongmin;Kim, Jin-Hyung;Choi, Won-Sub;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.794-806
    • /
    • 2017
  • It is essential to protect the national space assets and space environment safely as a space development country from the continuously increasing space debris. And Active Debris Removal(ADR) is the most active way to solve this problem. In this paper, we studied the Artificial Neural Network(ANN) for a stable recognition model of vision-based space debris tracking system. We obtained the simulated image of the space environment by the KARICAT which is the ground-based space debris clearing satellite testbed developed by the Korea Aerospace Research Institute, and created the vector which encodes structure and color-based features of each object after image segmentation by depth discontinuity. The Feature Vector consists of 3D surface area, principle vector of point cloud, 2D shape and color information. We designed artificial neural network model based on the separated Feature Vector. In order to improve the performance of the artificial neural network, the model is divided according to the categories of the input feature vectors, and the ensemble technique is applied to each model. As a result, we confirmed the performance improvement of recognition model by ensemble technique.

Stereo Matching using Dynamic Programming in Scale-Space (스케일 공간에서 동적 계획을 이용한 스테레오 정합)

  • 최우영;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.44-53
    • /
    • 1992
  • In this paper, a matching method is proposed to improve the correct matching rate in stereo correspondence matching in which the fingerprint of zero-crossing points on the scale-space is used as the robust matching feature. The dynamic programming, which is appropriate for the fingerprint feature, is introduced for correspondence matching. We also improve the matching rate by using the post-processing for correcting mismatched points. In simulation, we apply the proposed algorithm to the synthetic and real images and obtain good matching results.

  • PDF

Document Clustering Technique by Domain Ontology (도메인 온톨로지에 의한 문서 군집화 기법)

  • Kim, Woosaeng;Guan, Xiang-Dong
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.143-152
    • /
    • 2016
  • We can organize, manage, search, and process the documents efficiently by a document clustering. In general, the documents are clustered in a high dimensional feature space because the documents consist of many terms. In this paper, we propose a new method to cluster the documents efficiently in a low dimensional feature space by finding the core concepts from a domain ontology corresponding to the particular area documents. The experiment shows that our clustering method has a good performance.

Arrow Diagrams for Kernel Principal Component Analysis

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.175-184
    • /
    • 2013
  • Kernel principal component analysis(PCA) maps observations in nonlinear feature space to a reduced dimensional plane of principal components. We do not need to specify the feature space explicitly because the procedure uses the kernel trick. In this paper, we propose a graphical scheme to represent variables in the kernel principal component analysis. In addition, we propose an index for individual variables to measure the importance in the principal component plane.

Fermi Large Area Telescope Observations of the Dark Accelerator HESS J1745-303

  • Yeung, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.319-321
    • /
    • 2016
  • Reviewing the two MeV-GeV investigations in the field of the HESS J1745-303 performed using Fermi Large Area Telescope data, we confirmed that the emission peak comfortably coincides with 'Region A' in the TeV regime, which is the brightest part of this feature. The MeV-TeV spectrum can be precisely described by a single power-law. Also, recent investigation has shown that the MeV-GeV feature is elongated from 'Region A' toward the north-west, which is similar to the case of largescale atomic/molecular gas distribution.

Classifier Selection using Feature Space Attributes in Local Region (국부적 영역에서의 특징 공간 속성을 이용한 다중 인식기 선택)

  • Shin Dong-Kuk;Song Hye-Jeong;Kim Baeksop
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1684-1690
    • /
    • 2004
  • This paper presents a method for classifier selection that uses distribution information of the training samples in a small region surrounding a sample. The conventional DCS-LA(Dynamic Classifier Selection - Local Accuracy) selects a classifier dynamically by comparing the local accuracy of each classifier at the test time, which inevitably requires long classification time. On the other hand, in the proposed approach, the best classifier in a local region is stored in the FSA(Feature Space Attribute) table during the training time, and the test is done by just referring to the table. Therefore, this approach enables fast classification because classification is not needed during test. Two feature space attributes are used entropy and density of k training samples around each sample. Each sample in the feature space is mapped into a point in the attribute space made by two attributes. The attribute space is divided into regular rectangular cells in which the local accuracy of each classifier is appended. The cells with associated local accuracy comprise the FSA table. During test, when a test sample is applied, the cell to which the test sample belongs is determined first by calculating the two attributes, and then, the most accurate classifier is chosen from the FSA table. To show the effectiveness of the proposed algorithm, it is compared with the conventional DCS -LA using the Elena database. The experiments show that the accuracy of the proposed algorithm is almost same as DCS-LA, but the classification time is about four times faster than that.

Comparison of Feature Selection Processes for Image Retrieval Applications

  • Choi, Young-Mee;Choo, Moon-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1544-1548
    • /
    • 2011
  • A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.

Semi-supervised Multi-view Manifold Discriminant Intact Space Learning

  • Han, Lu;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4317-4335
    • /
    • 2018
  • Semi-supervised multi-view latent space learning is gaining considerable popularity recently in many machine learning applications due to the high cost and difficulty to obtain the large amount of label information of data. Although some semi-supervised multi-view latent space learning methods have been presented, there is still much space for improvement: 1) How to learn latent discriminant intact feature representations by employing data of multiple views; 2) How to exploit the manifold structure of both labeled and unlabeled point in the learned latent intact space effectively. To address the above issues, we propose an approach called semi-supervised multi-view manifold discriminant intact space learning ($SM^2DIS$) for image classification in this paper. $SM^2DIS$ aims to seek a manifold discriminant intact space for data of different views by making use of both the discriminant information of labeled data and the manifold structure of both labeled and unlabeled data. Experimental results on MNIST, COIL-20, Multi-PIE, and Caltech-101 databases demonstrate the effectiveness and robustness of our proposed approach.