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Abstract 
 

Semi-supervised multi-view latent space learning is gaining considerable popularity recently 
in many machine learning applications due to the high cost and difficulty to obtain the large 
amount of label information of data. Although some semi-supervised multi-view latent space 
learning methods have been presented, there is still much space for improvement: 1) How to 
learn latent discriminant intact feature representations by employing data of multiple views; 2) 
How to exploit the manifold structure of both labeled and unlabeled point in the learned latent 
intact space effectively. To address the above issues, we propose an approach called 
semi-supervised multi-view manifold discriminant intact space learning (SM2DIS) for image 
classification in this paper. SM2DIS aims to seek a manifold discriminant intact space for data 
of different views by making use of both the discriminant information of labeled data and the 
manifold structure of both labeled and unlabeled data. Experimental results on MNIST, 
COIL-20, Multi-PIE, and Caltech-101 databases demonstrate the effectiveness and robustness 
of our proposed approach.   
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1. Introduction 

With the rapid development of data acquisition technology, there exists different forms of 
representations (features) with respect to a certain object [1-3]. For example, in the application 
of computer vision, multi-pose images can be obtained by shooting from different angles. 
Clothing images can be described by color, texture and shape. These multiple types of data are 
generally named multi-view data [4-6]. For classification problems, multi-view data usually 
contains more abundant information and representation ability, especially the complementary 
information, than that of single view. Thus, integrating information from different views can 
help to enhance the learning performance.    

Recently, multi-view latent space learning, which aims to discover a latent feature 
representation to represent different views of one data, is becoming an important research 
direction in machine learning and image processing [7-10]. To exploit the intrinsic geometry 
of the data distribution in each view, graph regularized partial multi-view clustering (GPMVC) 
[11] is proposed and applied in the problem of partial-views (every view has missing 
information). Bi-level multi-view latent sparse learning (BLMV) [12] not only explores both 
shared and private latent factors of multiple views, but also reveals the nonlinearly inherent in 
data by taking the manifold structure of each view into consideration. Assuming that each 
single view of the data only captures partial information, and all views together can carry 
redundant information about the learned intact feature representation, multi-view intact space 
learning (MISL) [13] discovers a latent intact representation for each data of multiple views. 
When there exists labeled samples, these unsupervised multi-view latent space learning 
methods cannot employ the label information of labeled samples to guide classification.  

Some researchers utilize the label information of multi-view data to extract effect 
discriminant information [14-21]. For many real-world applications such as image annotation, 
gene function prediction, and insider threat detection, hierarchical multi-latent space (HiMLS) 
[16] learns a hierarchical multi-latent space to jointly model the triple types of heterogeneity, 
i.e., task heterogeneity, view heterogeneity, and label heterogeneity of the data. Discriminative 
multi-view interactive image re-ranking (DMINTIR) [17] is well applied in multi-view 
interactive image re-ranking. By maximally preserving the discriminative information in the 
learned latent subspace, DMINTIR losslessly recovers the original feature space. Based on the 
assumption that there exists one single discriminative intact feature representation for different 
views of the data point, multiview intact and single-view classifier learning (MISC) [18] tries 
to recover the discriminative intact feature space for the data points and learns a classifier in 
the intact space with the help of class labels of the data. However, some favorable information 
in unlabeled samples cannot be effectively exploited.  

Due to the high cost and the difficulty of obtaining the large amount number of label 
information of data, a lot of applications in machine learning can be regarded as 
semi-supervised learning problems [22-24]. Recently, multi-view latent space learning in 
semi-supervised setting has attracted a lot of attentions. Semi-supervised unified latent factor 
learning (SULF) [25] learns a predictive unified latent representation by leveraging both 
complementary information among multiple views and the supervision of partially labeled 
information. First, SULF simultaneously performs Nonnegative Matrix Factorization (NMF) 
with different view data matrices to exploit the information of multiple feature sets 
collaboratively. Second, a 2,1l -norm regularized regression model is used to minimize the 
prediction error on partially labeled data with the latent representation. Multi-view concept 
learning (MCL) [26] is proposed to address the problem of learning a nonnegative conceptual 
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representation from multiple view data. In the learned common latent space across different 
views, MCL can reflect the semantic relationships between data items through graph 
embedding regularization on labeled items. Meanwhile, MCL allows each latent factor to be 
associated with a subset of views. As a result, conceptual patterns hidden in multi-view 
features can be captured flexibly. Partially shared latent factor (PSLF) [27] jointly exploits 
both consistency and complementary properties of multi-view data to obtain a compact and 
comprehensive partially shared latent representation, which is composed of the common latent 
factor shared by all views and view-specific latent factors. Adaptive multi-view 
semi-supervised nonnegative matrix factorization (AMVNMF) [28] uses label information as 
hard constraints to ensure data with same class label are clustered together, so that the 
discriminating power of new representations are enhanced. 

1.1 Motivation and Contributions 
Although some semi-supervised multi-view latent space learning methods have been 
presented, there is still much space for improvement. We elaborate it in the following two 
points: 

(1) How to discover the latent intact feature representations for multiple views of data 
points: In practice, due to the noises in multiple views, the performances of most 
multi-view latent space learning methods are usually affected. MISL integrates the 
encoded complementary information in multiple insufficient views to discover a latent 
intact representation of the data. However, existing latent space based semi-supervised 
multi-view learning methods, such as SULF [25], MCL [26], PSLF [27], and 
AMVNMF [28], fails to discover latent intact (complete and not damaged) space due to 
the influence of noises in insufficient views. 

(2) How to effectly use the local manifold structure from the unlabeled latent feature 
representations: the exploitation of the manifold structure of data will bring a better 
classification performance [29]. However, SULF, MCL, PSLF, and AMVNMF use the 
unlabeled information only in the process of matrix decomposition, and do not focus on 
exploiting the manifold structure of latent feature representations of the unlabeled data.   

In this paper, we propose a semi-supervised multi-view manifold discriminant intact space 
learning (SM2DIS) approach. The contributions of our work are summarized as follows:  

(1) SM2DIS learns the discriminant intact feature representation for each labeled training 
data point. To achieve this goal, SM2DIS makes generated intra-class multi-view data 
points near to each other, and simultaneously makes generated inter-class multi-view 
data points as far as possible. The learned feature representations are intact as SM2DIS 
uses all view generation matrices to restore the view feature space. 

(2) SM2DIS explores the manifold structure of data points in the learned intact space by 
employing the information of both labeled and unlabeled data points to construct 
nearest graph. As a result, the classification performance of our proposed SM2DIS can 
be effectively enhanced. 

(3) We propose an iterative solution for SM2DIS. Experiments on several datasets show the 
effectiveness of the proposed SM2DIS. 

The rest of the paper is organized as follows: In Section 2, some related works including 
MISL, SULF, MCL, PSLF are introduced. The proposed SM2DIS approach is introduced in 
Section 3. Section 4 reports the experimental results on four benchmark datasets. Finally, we 
give conclusion in Section 5.  
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2. Related Work 

2.1 Multi-view Intact Space Learning 

Assume that each data of multiple views { }
1

Mv
i v

z
=

have an intact feature representation ix , where 
v
iz  is the i th point in the v th view space, ix  is the i th data point in the latent intact space χ , 

multi-view intact space learning (MISL) [13] focuses on learning m  view generation 
functions { }1 2, ,..., mW W W W=  and a latent intact space χ  by solving the following problem: 

                                          
2

2 22
1 22 2, 1 1 1 1
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where m  denotes the number of views, n  is the number of data points in the intact space χ ,  
v iW x  is the generated multi-view data point of the i th data point with repect to the v th view , 

c  is a constant scale parameter, 1C  and 2C  are non-negative parameters. The first term in 
formula (1) reflects the relationship between each view space and the generated multi-view 
data points, where the reconstruction error over the latent space is minimized by using Cauchy 
estimator [30]. The second and the third term in formula (1) are regularization terms. 

2.2 Semi-supervised Unified Latent Factor Learning  
Semi-supervised unified latent factor learning (SULF) [25] uses joint non-negative matrix 
factorization to learn a unified latent space shared by all view data. At the same time, a 
regularized regression model is adopted to minimize the prediction error of the partially 
labeled data using the latent representation. Assume kX  is the sample set of the k th view, Y  
is the label matrix with its element iry  defined as: if the r th data point belongs to the i th class, 
the value of iry  is set to 1; otherwise the value of iry  is set to 0. The objective function of 
SULF is defined as  
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where kπ , kU  are the weight vector and the base matrix with respect to the k th view 
respectively, ( )1= ,..., ,...,k mπ π π∏  and λ  control the smoothness of ∏ . SULF divides the 
common factor matrix V  into two parts lV  and ulV . lV , which is consist of the first R column 
vectors in V , is the compact representation of R  labeled data. ulV , which is consist of the 
remained n R−  column vectors in V , is the compact representation of n R−  unlabeled data. 
For the labeled part lV , SULF learns a linear classifier W to fit the label matrix Y . 

2.3 Multi-view Concept Learning 
Multi-view concept learning (MCL) [26] was proposed to capture conceptual factors from 
multi-view data by jointly learning basis matrix kU  for the k th view and the consensus 
encoding matrix V  shared by all views. Besides, by constructing the within-class affinity 
graph aG  and the between-class penalty graph pG for labeled data, MCL captures the 
semantic relationship between data items. The objective function of MCL can be formulated 
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as 
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where lV  denotes the labeled items in consensus encoding matrix V , aL  and pL  are the graph 
Laplacian matrices for the within-class affinity graph and the between-class affinity graph, 
respectively (see [26]), α  and β  are tunable parameters. MCL uses block coordinate descend 
method [31] to get the solution of problem (3). 

2.4 Partially Shared Latent Factor Learning 
Partially shared latent factor learning (PSLF) [27] jointly exploits the properties of consistency 
and complementarity of multi-view data. It aims to learn the partially shared latent factor 
matrix 1 2; ;...; ;m

s s s CV V V V V =    through leveraging data matrices { } 1

m
k kX

=
and the label matrix Y , 

where CV  is the common part  shared by all views and 1 2, ,..., m
s s sV V V  are m  view-specific parts. 

Assume lV , the first lN  columns of V , denotes the first lN  labeled instances, and  uV  denotes 
the remained uN  unlabeled instances, PSLF solves the following problem: 
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where W  is the regression coefficient matrix, λ , β  and γ  are nonnegative parameters. As 
kV  can be divided into four components: . . . ., , ,k k

s l s u c l c uV V V V , the partially shared latent factor 
matrix V in formula (4) are solved by updating . . . ., , ,k k

s l s u c l c uV V V V  iteratively (see [27]). By 
obtaining the solutions of CV  and k

sV , PSLF well reflects both the consistency information and 
complementary information of multi-view data simultaneously. 

 2.5 Adaptive Multi-view Semi-supervised Nonnegative Matrix Factorization 
Adaptive multi-view semi-supervised nonnegative matrix factorization (AMVNMF) [28] is 
developed for accurate clustering multi-view data so that all data with the same label should be 
clustered regardless of their multiple views. Assume kZ  is the auxiliary matrix of the k th 
view, 

ln NI −  is an ( ) ( )l ln N n N− × −  identity matrix, and C  is the indicator matrix, we set 1ijc =  

if data point ix  belongs to the j th class, otherwise 0ijc = . AMVNMF extended the traditional 
unsupervised NMF to a semi-supervised multi-view manner by solving the following 
problem: 
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 is the label constraint matrix A , which is constructed only based on 

the label information and consistent for all features (see [28]). To get the solution of formula 
(5), AMVNMF updates the variables iteratively and more details can be referenced to [28]. 
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3. The Model of SM2DIS  
In this section, our SM2DIS approach is introduced. First, we describe the semi-supervised 
multi-view manifold discriminant term, and then we give the objective function of SM2DIS. 
Finally, we introduce the classification strategy on SM2DIS. 

3.1 Semi-supervised Multi-view Manifold Discriminant Term 
Suppose each training sample kx is characterized from M views, and  

( ){ }, 1, 2,..., ; 1, 2,...,jj j
k kX x x X k n j M= ∈ = =  denote the training sample sets. Each view set 

( ) ( ) ( ),j j j
L UX X X =   contains two parts: ( )j

LX  is composed of C  class labeled samples and ( )j
UX  

is composed of ( )1Cn +  unlabeled samples. We define ( )l ⋅  as the label information of samples, 

and the lables of unlabeled samples ( ){ }
1

Mj
U j

X
=

 are set to 1C + .  

The main purpose of our proposed SM2DIS approach is to learn a manifold discriminant 
intact space for all views of data. Let , 1, 2,...,kh k n=  denote the learned feature representations 

for the training samples { }
1

Mj
k j

x
=

 from M views, [ ] { } 1, n
L U k kH H H h

=
= =  denote the learned 

intact feature space, jW  denote the view generation function with respect to the j th view, 

j kW h  denote the generated multi-view data point of sample j
kx . Table 1 gives the explanations 

about the variables. On the one hand, all the learned intact feature representations for the 
labeled samples are discriminative. On the other hand, the intrinsic geometrical structure of 
both labeled and unlabeled intact feature representations can be employed simultaneously. 
Specifically, if two samples j

kx X∈  and r
tx X∈  have the same label or are unlabeled samples 

within the same neighborhood (at least one of them is unlabeled), the generated multi-view 
data points j kW h  and r tW h  should also be close to each other; if j

kx  and r
tx  are from different 

classes or are unlabed samples of different neighborhoods (at least one of them is unlabeled), 
j kW h  and r tW h  should keep as distant as possible to each other. 
To explore the label information and the local geometric structure of the learned intact 

feature representations, according to graph embedding theory [32], we construct two nearest 
neighbor graphs P  and P . The weight matrix S  on graph P and the weight matrix S  on 
graph P  are defined separately by:  

       ( )

( ) ( ) ( )
( ) ( ) ( ) ( ),

,

1 1

= , 1,

0,

j r j
k t k

j r jT r j r j r j r r j
k t k t k t k t k K t t K k

if l x l x and l x C

S x x x x if l x or l x C and x N x or x N x

else

 = ≠ +
 ⋅ ⋅ = + ∈ ∈



，

         (6) 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

,

1 1

= , 1,

0,

j r j r
k t k t

j r jT r j r j r j r r j
k t k t k t k t k K t t K k

if l x l x and l x l x C

S x x x x if l x or l x C and x N x or x N x

else

 ≠ ≠ +
 ⋅ ⋅ = + ∉ ∉



， ， ，

       (7) 

where ( )r
K tN x  denotes the K  nearest neighbors of sample r

tx . Then we define the 
semi-supervised multi-view manifold discriminant term as 
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Table 1. Explanation about the variables 

Variable Explanation 
kx  the k th training sample in the original space 

X  feature sets containing M views 
( )j
LX  the labeled part of the j th view 
( )j
UX  the unlabeled part of the j th view 

kh  the feature representation learned from { }
1

Mj
k j

x
=

 

H  the learned manifold discriminant intact space 
LH  the labeled part in the learned manifold discriminant intact space 

UH  the unlabeled part in the learned manifold discriminant intact space 

jW  the learned view generation function for the j th view 

j kW h  
the generated multi-view data point which is generated by 

view generation matrix jW  over the feature representation kh  
 

3.2 The Objective Function of SM2DIS 
Inspired by MISL [13], minimizing the reconstruction error over the intact space can well 
model the relationship between the view space and the learned intact space. Based on (8), we 
formulate the objective function of SM2DIS as follows: 
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where α  and c  are non-negative coefficient, γ  is a constant scale parameter, 2
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M

j F
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W
=
∑  and 

2

2
1

n

k
k

h
=
∑  are regularization terms to penalize the the view generation matrix and the intact 

space. 

4. Optimization 
The solution of the objective function (9) can be obtained in an iterative process. For each 
iteration, we use following strategies: 1) when updating view generation function jW  

corresponding to the j th view, all data points { } 1

n
k kh

=
 in the learned intact space Η  are fixed; 2) 

when updating each data point in the learned intact space, view generation functions of all 
views are fixed. 
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4.1 Updating Rule for Generation Function jW  

Assume that { } 1

n
k kh

=
 are fixed, and when calculating jW , all view generation functions 

( )rW r j≠  are fixed. Thus, the objective function in Eq. (9) can be reduced to: 
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where ,kQ  ,jA  and jB  are separately defined in (14), (15) and (16) 
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The details of calculating each jW  can be referred to Algorithm 1. 

4.2 Updating Rule for Each Point of Intact Space Η  

Assume that { }
1

M

j j
W

=
 are fixed, and when calculating kh , all other points in the intact space 

( )th t k≠  are fixed. Thus, the objective function in Eq. (9) can be reduced to: 
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where jQ , kD  and kE  are separately defined in (21), (22) and (23) 
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The process of solving each kh  is similar to algorithm 1.   
 
Algorithm 1. The procedure of solving jW  

Input: Given feature set jX  from the j th view, and parameters α , γ , c . 
Output: jW . 
Initialize: all view generation functions ( )rW r j≠ , the intact space H , and 0

jW . 
Compute covariance matrices S  and S  using Eq. (6) and (7). 
Compute matrices ,jA  and jB  using Eq. (15) and (16). 
Compute kQ  using Eq. (14) when jW  is set to 0

jW . 
While not converged do 
1. Obtain the estimate of jW  using Eq. (13). 
2. Update kQ  using the estimate of jW . 
End While  

                            

4.3 The Classification Schema of SM2DIS 

For the given multi-view features { }1 2, ,..., My y y  of  a specific testing sample y , assume y∆ is 
the feature representation of y  in the learned manifold discriminant intact space, once the 
optimal view generation functions { }1 2, ,..., MW W W W=     is obtained, the optimal solution of 
y∆  can be obtained by 
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                                      (24) 

Then, we can use nearest neighbour classifier (NNC) [33] for classification. That is, the 
label of y∆  is same to the feature representation point in LH  which has the minimal distance to 
y∆ . 

Finally, we summarize the procedure of SM2DIS in Algorithm 2. 
 

Algorithm 2. Procedure of SM2DIS 

Input: Feature sets ( ){ }
1

Mj

j
X

=
 and parameters α , γ , c . 

Output: { }
1

M

j j
W

=
 , { } 1

n
k kh

=
.  

Initilize: { }
1

M

j j
W

=
 and { } 1

n
k kh

=
.  

While not converged do 
  Fix { } 1

n
k kh

=
, update { }

1

M

j j
W

=
 using Eq. (13). 

Fix { }
1

M

j j
W

=
, update { } 1

n
k kh

=
 using Eq. (20). 

End While  
Realize classification: For each testing sample, calculate the corresponding intact feature 
representation y∆  by Eq. (24), and use NNC for classification. 

4.4 Comparison with Related Works 
In this section, we give a detailed comparison between our proposed SM2DIS approach and 
compared methods: 

Both MISL and our proposed SM2DIS are based on the same assumption that each view 
only captures partial information about the learned latent intact feature representations. MISL 
[13] is an unsupervised learning method which integrates information from various views to 
find a latent intact space of data, while our SM2DIS approach not only considers the discovery 
of the latent intact space, but also focuses on exploiting the discriminant information from 
labeled data and local geometrical structure of both labeled and unlabeled data in the learned 
latent intact space.  

SULF [25], MCL [26], PSLF [27], and AMVNMF [28] are semi-supervised multi-view 
learning methods. As these methods don’t take the view insufficiency problem stated in MISL 
into consideration, the learned feature representations are not intact. Our SM2DIS learns the 
intact feature representations by using all view generation matrices to restore the view feature 
space. The detailed differences between our SM2DIS and these methods are shown as follows: 
(1) SULF models the label information as a factorization constraint on lV , while our proposed 

SM2DIS approach exploits the discriminant structure of the latent intact space. As a result, 
the learned feature representations { } 1

N
k kh

=
 by our SM2DIS approach are more 

discriminative. Besides, SM2DIS utilizes the information of both labeled and unlabeled 
data for exploiting manifold structure of the learned latent intact space. 

(2) MCL exploits the semantic relationship between labeled items in the learned latent space, 
while our SM2DIS approach tries to reveal the local manifold structure of both labeled and 
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unlabeled points as well as the discriminant information in the latent intact space. 
(3) PSLF extracts a compact and comprehensive partially shared latent representation for 

multi-view data. The label information used in sparse regression is to predict the cluster 
labels of labeled data, while our SM2DIS approach is dedicated to extracting discriminant 
information from the latent intact space, which will be more favorable for classification. 
Besides, SM2DIS reveals the relationship between the intact feature representations 
effectively. 

(4) AMVNMF guarantees that all the samples sharing the same labels are grouped together by 
taking the label information as hard constraints, regardless they are coming from the same 
or different views. In addition to the use of label information, SM2DIS considering the 
utilization of unlabeled samples to achieve a better classification performance. 
 

5. Experimental Results and Analysis 

5.1 Introduction of Databases 
In this section, as in [34], four benchmark image databases are used to evaluate the 
effectiveness of our proposed SM2DIS approach, including MNIST [35] handwritten digit 
database, COIL-20 [36] object database, Multi-PIE [37] database, and Caltech-101 [38] 
database.  

MNIST database contains 1000 handwritten digit images from 10 (0~9) digits with 100 
sample images per digit. The pixel size of each image is 28×28. COIL-20 object database 
consists of 1440 images from 20 objects with 72 samples per object. The pixel size of each 
image is 64 × 64. For MNIST and COIL-20 databases, Karhunen-Loeve (KL) transformation 
features [39], Gabor transformation features [40] and Local Binary Patterns (LBP) features 
[41] are extracted to express each image. Multi-PIE database consists of 75000 images from 
337 different individuals. The size of each image is 64× 64. For convience, 68 people from 
Multi-PIE dataset (24 samples per people) are selected for experiment. For Multi-PIE dataset, 
five feature sets, i.e., C05, C07, C09, C27 and C29, are used in the experiment. Caltech-101 
dataset is a large-scale object dataset from 101 different categories such as airplanes, face, 
cellphone, etc.. Each image is roughly 300× 200 pixels. For Caltech-101 dataset, we extract 
predefined distance matrices of PHOW color [42], geometric blur [43] and self-similarity 
features [44] to represent each image. For the above four databases, we use PCA 
transformation to reduce the dimension of features to 100.  

5.2 Compared Methods and Experimental Settings 
In this section, we compare the proposed SM2DIS approach with several state-of-the-art 
methods on the above four databases, including three types of methods: semi-supervised 
multi-view feature learning methods: SULF [25], MCL [26], PSLF [27], AMVNMF [28]; 
unsupervised multi-view feature learning method MISL [13]; supervised multi-view feature 
learning method MISC [18]. 

To construct the semi-supervised scenario, the percentage of labeled samples in the training 
set is set to 40%, while the rest of training samples are chosen as unlabeled samples. Besides, 
to simulate the real enviroment, we add different values of signal-to-noise to MNIST, COIL-20, 
Multi-PIE, and Caltech-101 databases to evaluate the robustness of our approach. In the 
experiment, the value of signal noise ratio (SNR) is set to 5.   

On the four databases, we randomly select 40, 36, 8, 30 samples per class separately for 
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training, and use the remained for testing (on Caltech-101 database, the maximum is 50 images 
per category for testing). For unsupervised method MISL, all training samples (including 
labeled and unlabeled) are used. For supervised method MISC, only the labeled part of training 
samples are chosen for learning. The tuning parameters in SM2DIS, i.e., non-negative 
coefficient α  and c , the constant scale parameter γ , the number of nearest neighbors K , the 
dimension d of the manifold discriminant intact space) and all the parameters of other 
compared methods, are evaluated by 5-fold cross validation to avoid over-fitting. During the 
process of experiment, we observe that the adjustment of constant scale parameter γ  has little 
effect on the results, thus we set 60γ =  consistently on the four databases. For parameters α , 
c , K , and d , we set the values of them as follows: on the MNIST database, =0.4α , =0.06c , 

37K = , 190d = ; on the COIL-20 database, =0.5α , =0.05c , 25K = , 210d = ; on the Multi-PIE 
database, =0.3α , =0.08c , 36K = , 180d = ; on the Caltech-101 database, =0.7α , =0.04c , 

15K = , 160d = . We report the average classification results on four datasets according to 20 
times of random experiments. 

5.3 Comparison with State-of-the-art Methods 

5.3.1 Classification Accuracy Evaluation 
In this subsection, we conduct experiment to evaluate the classification performance of our 
proposed SM2DIS. Table 2 shows the average classification results on MNIST, COIL-20, 
Multi-PIE and Caltech-101 databases, with best classification performance in bold. According 
to the Table, our SM2DIS outperforms the compared methods consistently on the four 
databases. 
 

Table 2. Average classification accuries on four databases (%) 
Method MNIST COIL-20 Multi-PIE Caltech-101 

MISL[13] 71.54 75.37 74.11 57.00 
SULF [25] 73.85 76.77 75.10 59.65 
MCL [26] 75.02 79.32 77.44 61.28 
PSLF [27] 74.14 78.57 75.58 60.45 

AMVNMF[28] 72.76 76.28 74.35 58.97 
MISC [18] 72.79 78.18 76.51 60.17 
SM2DIS 77.37 81.48 79.02 62.68 

 
Compared with multi-view latent space learning methods MISL, SULF, MCL, PSLF, 

AMVNMF, and MISC, we analysis the reasons for the performance improvement as follows: 
MISL is an unsupervised multi-view learning method, where the label information is not used 
in the process of classification. MISC ignores the utilization of information of unlabeled 
multi-view data. SULF takes use of the label information of partial labeled samples and 
correlation information from multi-view data. PSLF jointly exploits the properties of 
consistency and complementarity of multi-view data. AMVNMF clusters the data with the 
same label regardless they are from the same view or not. However, the above three 
semi-supervised multi-view learning methods SULF, PSLF, and AMVNMF can not extract 
the useful discriminative information and local geometrical information from the learned 
latent space. MCL exploits the discriminant information to capture the semantic relationship 
between data items in the latent space. However, the exploition of manifold structure is not 
considered. 
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Table 3. Average classification accuries with different percentages of labeled training samples on four 

databases (%) 

Database Percentage MISL 
[13] 

SUL
F [25] 

MCL 
[26] 

PSLF 
[27] 

AMVNMF 
[28] 

MISC 
[18] SM2DIS 

MNIST 

10% 71.54 68.25 71.27 69.88 67.95 67.66 72.85 
20% 71.54 69.35 72.05 70.46 68.77 70.13 73.72 
30% 71.54 70.33 72.99 71.69 69.85 71.65 75.00 
40% 71.54 73.85 75.02 74.14 72.76 72.79 77.37 
50% 71.54 74.87 77.41 76.61 74.05 75.22 79.71 

COIL-20 

10% 75.37 71.67 74.78 73.45 70.95 70.22 76.15 
20% 75.37 73.21 75.97 74.52 72.78 73.39 77.39 
30% 75.37 74.87 77.28 76.65 74.09 75.62 79.23 
40% 75.37 76.77 79.32 78.57 76.28 78.18 81.48 
50% 75.37 78.68 81.83 79.97 77.72 79.27 83.97 

Multi-PIE 

10% 74.11 71.32 73.12 72.36 69.38 70.55 74.67 
20% 74.11 72.08 74.10 73.25 70.97 71.22 75.83 
30% 74.11 73.05 75.29 74.20 72.62 73.74 77.05 
40% 74.11 75.10 77.44 75.58 74.35 76.51 79.02 
50% 74.11 76.95 79.07 78.24 76.00 77.85 81.50 

Caltech-101 

10% 57.00 52.95 56.04 54.83 52.11 54.75 57.35 
20% 57.00 54.28 57.21 56.89 54.12 55.65 58.25 
30% 57.00 57.00 58.26 57.48 56.13 56.29 59.36 
40% 57.00 59.65 61.28 60.45 58.97 60.17 62.68 
50% 57.00 62.03 64.15 63.20 61.12 62.09 65.37 

5.3.2 Classification Performance Evaluation with Different Percentages of 
Labeled Training Samples 
To further analysis the classification performances on the four databases, we increase the 
percentage of labeled training samples from 10% to 50% with the step size of 10%, and list the 
results in Table 3. It can be observed that SM2DIS performs better than compared methods 
consistently, which indicates that the intact feature representations learned by SM2DIS are 
with better discriminative structure and manifold structure.  

5.3.3 Classification Performance Evaluation with Different Values of SNR 
SNR is an important factor to measure the robustness of the learning method. Fig. 1 (a) – (d) 
show the average classification results on MNIST, COIL-20, Multi-PIE, and Caltech-101 
databases with respect to different SNR values. We can observe that the classification 
accuracy of SM2DIS drops more slowly than constract methods when the proportion of noise 
information in images becomes much more larger, i.e., the value of SNR is becoming much 
more smaller. Thus, our proposed SM2DIS can get a better classification performance to deal 
with view-insufficiency problem. 

5.3.4 Evaluation of the Influence of Parameters 
This subsection focuses on evaluating the impact of important parameters in SM2DIS 
(non-negative coefficient α  and c , the number of nearest neighbors K , and the dimension 
d of the intact manifold discriminant space) on the classification performance. Taking the 
MNIST database as an example, Fig. 2 (a) – (d) illustrate the average classification accuracies 
with the change of parameter values. For non-negative coefficient parameter α , we observe 
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the performance variations of our proposed approach in the change interval of [0.1 1] with the 
step size of 1; for non-negative coefficient parameter c , we observe the performance 
variations of our proposed approach in the change interval of [0.01 0.1] with the step size of 
0.01; for the number of nearest neighbors parameter K , we observe the performance 
variations of our approach in the change interval of [1 39] with the step size of 1; for the 
dimension of the intact manifold discriminant space parameter d , we observe the 
performance variations of our approach in the change interval of [10 300] with the step size of 
10. From Fig. 2 (a) – (d), SM2DIS can rearch a stable and best state when α  is in the interval 
of [0.3 0.5], c  is in the interval of [0.05 0.07], K  is in the interval of [35 37], and d  is in the 
interval of [160 220]. For convenience, we set =0.4α , =0.06c , 37K = , 190d =  on MNIST 
database. 
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Fig. 1.  Classification results on the four databases with different SNR values. 

5.3.5 Evaluation of Convergence 
In this subsection, we conduct experiment to observe the convergency of our proposed 
SM2DIS approach. Taking the MNIST database as an example, Fig. 3. shows the change of 
objective function value in formula (9) versus the increase of iteration times. It is observed that 
the value of the objective function decreases fast as the iteration number increases, which 
indicates the effectiveness of our approach. 
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Fig. 2.  (a) parameter α ; (b) parameter c ; (c) parameter K ; (d) parameter d . 
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Fig. 3. Convergence curve on MNIST database. 

5.3.6 Evaluation of Computation Cost 
In this subsection, we evaluate the average training time of SM2DIS and compared methods on 
MNIST, COIL-20, Multi-PIE, and Caltech-101 databases. Table 4 lists the corresponding 
results. The hardware configuration in the experiment is 2.4 GHz CPU, 4GB memory. It can be 
observed from Table 4 that the computation cost of our SM2DIS is comparable with that of 
MCL method, and the computation cost in Caltech-101 database is larger than that in other 
databases as the size of Caltech-101 database is relatively larger.   
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Table 4. Average training time (s) between SM2DIS and compared methods on four databases 

Method MNIST COIL-20 Multi-PIE Caltech-101 
MISL[13] 18.27 26.45 31.86 81.95 
SULF [25] 23.22 35.48 46.59 107.80 
MCL [26] 38.06 49.77 54.13 116.40 
PSLF [27] 32.86 41.15 48.91 112.05 

AMVNMF[28] 39.87 40.28 42.43 102.26 
MISC [18] 34.75 39.17 44.26 75.99 
SM2DIS 41.00 48.21 53.24 123.09 

 
 

Conclusion 
In this paper, we propose a new semi-supervised multi-view intact space learning approach 
named SM2DIS for discovering manifold and discriminative intact feature representations for 
data of multiple views. SM2DIS can effectively exploit the discriminant information from 
labeled intact feature representations by employing the complementary information of 
multi-view data. Besides, SM2DIS exploits the manifold structure from both labeled and 
unlabeled intact feature representations. Experiments on MNIST, COIL-20, Multi-PIE, and 
Caltech-101 databases have shown the effectiveness and robustness of our approach. 

For the future work, we will evaluate the effectiveness and robustness of our approach on 
more databases, and extend SM2DIS to its kernel version to further enhance the classification 
performance.   

References 
[1] M. Yang, and S. L. Sun, “Multi-view uncorrelated linear discriminant analysis with     applications 

to handwritten digit recognition,” in Proc. of the International Joint Conference on Neural 
Networks, pp. 4175-4181, July 6-11, 2014. Article (CrossRef Link) 

[2] S. L. Sun, X. J. Xie, and M. Yang, “Multi-view uncorrelated discriminant analysis,” IEEE 
Transactions on Cybernetics, vol. 46, no. 12, pp. 3272-3284, 2016. Article (CrossRef Link) 

[3] X. Y. Jing, Q. Liu, F. Wu, B. Xu, and Y. Zhu, “Web page classification based on uncorrelated 
semi-supervised intra-view and inter-view manifold discriminant feature extraction,” in Proc. of 
the International Conference on Artificial Intelligence, pp. 2255-2261, July 25-31, 2015.  

[4] M. Liu, Y. Luo, D. C. Tao, C. Xu, and Y. G. Wen, “Low-rank multi-view learning in matrix 
completion for multi-label image classification,” in Proc. of the  AAAI Conference on Artificial 
Intelligence, pp. 2778-2784, January 25-30, 2015.  

[5] Z. Y. He, C. Chen, J. J. Bu, P. Li, and D. Cai, “Multi-view based multi-label propagation for image 
annotation,” Neurocomputing, vol. 168, pp. 853-860, 2015. Article (CrossRef Link) 

[6] C. Deng, Z. T. Lv, W. Liu, J. Z. Huang, D. C. Tao, and X. B. Gao, “Multi-View Matrix 
Decomposition: A New Scheme for Exploring Discriminative Information,” in Proc. of the 
International Conference on Artificial Intelligence, pp. 3438-3444, July 25-31, 2015. 

[7] W. Y. Chang, C. P. Wei, and Y. C. F. Wang, “Multi-view nonnegative matrix factorization for 
clothing image characterization,” in Proc. of the International Conference on Pattern Recognition, 
pp. 1272-1277, Augest 24-28, 2014. Article (CrossRef Link) 

[8] Sun S, “A survey of multi-view machine learning,” Neural Computing and Applications, vol. 23, 
no. 7, pp. 2031-2038, 2013. Article (CrossRef Link) 

[9] Guo Y, “Convex subspace representation learning from multi-view data,” in Proc. of the AAAI 
Conference on Artificial Intelligence, pp. 387-393, July 14-18, 2013. 

 
 

http://dx.doi.org/doi:10.1109/IJCNN.2014.6889523
http://dx.doi.org/doi:10.1109/TCYB.2015.2502248
https://doi.org/10.1016/j.neucom.2015.05.039
https://doi.org/10.1109/icpr.2014.228
https://doi.org/10.1007/s00521-013-1362-6


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018                       4333 

[10] C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent multi-view subspace clustering,” in Proc. of 
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4333-4341, July 21-26, 2017. 
Article (CrossRef Link) 

[11] R. Nishant, N. Sumit, C. Santanu, and D. Om, “Partial Multi-view clustering using graph 
regularized NMF,” in Proc. Of the International Conference on Pattern Recognition, pp. 
2192-2197, December 4-8, 2016. Article (CrossRef Link) 

[12] Z. Xue, G. R. Li, S. H. Wang, W. G. Zhang, and Q. M. Huang, “Bi-Level multi-view latent space 
learning,” IEEE Transactions on Circuits and Systems for Video Technology, In Press, pp. 1-14, 
2016. Article (CrossRef Link) 

[13] C. Xu, D. C. Tao, and C. Xu, “Multi-view intact space learning,” IEEE Transsactions on Pattern 
Analysis and Machine Intelligence, vol. 37, no. 12, pp. 2531-2544, 2015. Article (CrossRef Link) 

[14] M. N. Kan, S. G. Shan, H. H. Zhang, S. H. Lao, and X. L. Chen, “Multi-view discriminant 
analysis,” in Proc. of the European Conference on Computer Vision, pp. 808-821, October 7-13, 
2012.  

[15] M. N. Kan, S. G. Shan, H. H. Zhang, S. H. Lao, and X. L. Chen, “Multi-view discriminant 
analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp. 
188-194, 2016. Article (CrossRef Link) 

[16] P. Yang, H. Davulcu, Y. D. Zhu, and J. R. He, “A generalized hierarchical multi-latent space 
model for heterogeneous learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 
28, no. 12, pp. 3154-3168, 2016. Article (CrossRef Link) 

[17] J. Li, C. Xu, W. K. Yang, C. Y. Sun, and D. C. Tao, “Discriminative multi-view interactive image 
re-ranking,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3113-3127, 2017.  
Article (CrossRef Link) 

[18] Q. J. Wang, H. Y. Lv, J. Yue, and E. Mitchell, “Supervised multiview learning based on 
simultaneous learning of multiview intact and single-view classifier,” Neural Computing & 
Applications,  vol. 28, no. 8, pp. 2293-2301, 2017. Article (CrossRef Link)  

[19] T. Diethe, D.R. Hardoon, and J. Shawe-Taylor, “Multi-view fisher discriminant analysis,” in Proc. 
of NIPS Workshop on Learning from Multiple Sources, pp. 1-8, December 8-11, 2008. 

[20] A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs, “Generalized multiview analysis: a 
discriminative latent space,” in Proc. of IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 2160-2167, June 16-21, 2012. Article (CrossRef Link) 

[21] Y. W. Guo, X. Q. Ding, and J. H. Xue, “MiLDA: a graph embedding approach to multi-view face 
recognition,” Neurocomputing, vol. 151, no. 3, pp. 1255-1261, 2015. Article (CrossRef Link) 

[22] X. Y. Jing, F. Wu, X. W. Dong, S. G. Shan, and S. C. Chen, “Semi-supervised multi-view 
correlation feature learning with application to webpage classification,” in Proc. of the AAAI 
Conference on Artificial Intelligence, pp. 1374-1381, February 4-9, 2017. 

[23] H. Tao, C. P. Hou, F. P. Nie, J. B. Zhu, and D. Y. Yi, “Scalable multi-view semi-supervised 
classification via adaptive regression,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 
4283-4296, 2017. Article (CrossRef Link) 

[24] F. Nie, G. Cai, and X. Li, “Multi-view clustering and semi-supervised classification with adaptive 
neighbors,” in Proc. of the AAAI Conference on Artificial Intelligence, pp. 2408-2414, February 
4-9, 2017. 

[25] Y. Jiang, J. Liu, Z. Li, and H. Lu, “Semi-supervised unified latent factor learning with multi-view 
data,” Machine Vision and Applications, vol. 25, no. 7, pp. 1635-1645, 2014.  
Article (CrossRef Link) 

[26] Z. Y. Guan, L. J. Zhang, J. Y. Peng, and J. P. Fan, “Multi-view concept learning for data 
representation,” IEEE Transactions on Knowledge and Data Engineering, vol. 27 no. 11, pp. 
3016-3028, 2015. Article (CrossRef Link) 

[27] J. Liu, Y. Jiang, Z. C. Li, Z. H. Zhou, and H. Q. Lu, “Partially shared latent factor learning with 
multiview data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 6, pp.  
1233-1246, 2015. Article (CrossRef Link) 

 
 

https://doi.org/10.1109/cvpr.2017.461
https://doi.org/10.1109/icpr.2016.7899961
https://doi.org/10.1109/TCSVT.2016.2607842
https://doi.org/10.1109/tpami.2015.2417578
https://doi.org/10.1007/978-3-642-33718-5_58
https://doi.org/10.1109/tkde.2016.2611514
https://doi.org/10.1109/tip.2017.2651379
https://doi.org/10.1007/s00521-016-2189-8
https://doi.org/10.1109/cvpr.2012.6247923
https://doi.org/10.1016/j.neucom.2014.11.004
https://doi.org/10.1109/tip.2017.2717191
https://doi.org/10.1007/s00138-013-0556-3
https://doi.org/10.1109/tkde.2015.2448542
https://doi.org/10.1109/tnnls.2014.2335234


4334                                                          Han et al.: Semi-supervised Multi-view Manifold Discriminant Intact Space Learning 

[28] J. Wang, X. Wang, F. Tian, C. H. Liu, H. Yu, and Y. Liu, “Adaptive multi-view semi-supervised 
nonnegative matrix factorization,” in Proc. of the International Conference on Neural Information 
Processing, pp. 435-444, October 16-21, 2016. Article (CrossRef Link) 

[29] D. Cai, X. He, K. Zhou, J. Han, and H. Bao, “Locality sensitive discriminant analysis,” in Proc. of 
the International Conference on Artificial Intelligence, pp. 714-719, January 6-12, 2007. 

[30] I. Mizera, and C. H. Muller, “Breakdown points of Cauchy regresion-scale estimators,” Statistics 
& Probability Letters, vol. 57, no. 1, pp. 79-82, 2002. Article (CrossRef Link) 

[31] C. J. Lin, “Projected gradient methods for nonnegative matrix factorization,” Neural Computation, 
vol. 19, no. 10, pp. 2756-2779, 2007. Article (CrossRef Link) 

[32] R. P. Wang, and X. L. Chen, “Manifold discriminant analysis,” in Proc. of IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 429-436, June 20-25, 2009.  
Article (CrossRef Link) 

[33] Y. M. Chen, and J. H. Chiang, “Face recognition using combined multiple feature extraction based 
on fourier-mellin approach for single example image per person,” Pattern Recognition Letters, vol. 
31, no. 13, pp. 1833-1841 , 2010. Article (CrossRef Link) 

[34] L. Han, X. Y. Jing, and F. Wu, “Multi-view local discriminantion and canonical correlation 
analysis for image classification,” Neurocomputing, vol. 275C, pp. 1087-1098 , 2018.  
Article (CrossRef Link) 

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document 
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324 , 1998.  
Article (CrossRef Link) 

[36] H. Murase, and S. K. Nayar, “Visual learning and recognition of 3-D objects from appearance,” 
International Journal of Computer Vision, vol. 14, no. 1, pp. 5-24, 1995. Article (CrossRef Link) 

[37] D. Cai, X. He, J. Han, and H. J. Zhang, “Orthogonal laplacian faces for face recognition,” IEEE 
Transactions on Image Processing, vol. 15, no. 11, pp. 3608-3614, 2006.  Article (CrossRef Link) 

[38] F. F. Li, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594-611, 2006.  
Article (CrossRef Link) 

[39] K. Fukunaga, and W. L. Koontz, “Application of the karhunen-loeve expansion to feature selection 
and ordering,” IEEE Transactions on Computers, vol. 19, no. 4, pp. 311-318, 1970. 
Article (CrossRef Link) 

[40] S.E. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of texture features based on Gabor 
filters,” IEEE Transactions on Image Processing, vol. 11, no. 10, pp. 1160-1167, 2002. 
Article (CrossRef Link) 

[41] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary patterns: application 
to face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 
12, pp. 2037-2041, 2006. Article (CrossRef Link) 

[42] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using random forests and ferns,” in 
Proc. of the International Conference on Computer Vision, pp. 1-8, October 14-21, 2007. 
Article (CrossRef Link) 

[43] H. Zhang, A. Berg, M. Maire, and J. Malik, “SVM-KNN: discriminative nearest-neighbor 
classification for visual category recognition,” in Proc. of IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 2126-2136, June 17-22, 2006. Article (CrossRef Link) 

[44] E. Shechtman, and M. Irani, “Matching local self-similarities across image and videos,” in Proc. of 
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 17-22, 2007.  
Article (CrossRef Link) 
 
 
 
 
 
 
 

https://doi.org/10.1007/978-3-319-46672-9_49
https://doi.org/10.1016/s0167-7152(02)00057-3
https://doi.org/10.1162/neco.2007.19.10.2756
https://doi.org/10.1109/cvprw.2009.5206850
https://doi.org/10.1016/j.patrec.2010.03.018
https://doi.org/10.1016/j.neucom.2017.09.045
https://doi.org/10.1109/9780470544976.ch9
https://doi.org/10.1007/bf01421486
https://doi.org/10.1109/TIP.2006.881945
https://doi.org/10.1109/tpami.2006.79
https://doi.org/10.1109/t-c.1970.222918
https://doi.org/10.1109/iciap.1999.797585
https://doi.org/10.1109/tpami.2006.244
https://doi.org/10.1109/iccv.2007.4409066
https://doi.org/10.1109/cvpr.2006.301
https://doi.org/10.1109/cvpr.2007.383198


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018                       4335 

 

 
 

Lu Han is a Ph.D Candidate in the College of Automation, Nanjing University of 
Posts and Telecommunications (NUPT), Nanjing, China. Her research interests include 
pattern recognition, artificial intelligence, and software engineering. 

 
 

Fei Wu received the Ph.D. degree from Nanjing University of Posts and 
Telecommunications (NUPT), Nanjing, China, in 2016. He is currently a lecturer with 
the College of Automation, NUPT. He is an author of more than twenty scientific 
papers. His research interests include pattern recognition, artificial intelligence, and 
software engineering. 
 

 

Xiao-Yuan Jing received the Doctoral degree of Pattern Recognition and Artificial 
Intelligence in the Nanjing University of Science and Technology, 1998. He was a 
Professor with the Department of Computer, Shenzhen Research Student School, 
Harbin Institute of Technology, 2005, and a Research Fellow with the Department of 
Computing, Hong Kong Polytechnic University. Now he is a Professor with the State 
Key Laboratory of Software Engineering, School of Computer, Wuhan University, and 
the College of Automation, Nanjing University of Posts and Telecommunications, 
China. His research interests include pattern recognition, machine learning, software 
engineering and artificial intelligence. He has published over 70 papers in the 
international conferences and journals like CVPR, IJCAI, AAAI, ICSE, FSE, ICME, 
IEEE TIP, TCSVT, TSMC-B, PR and so on. 

 


