• Title/Summary/Keyword: feature space

Search Result 1,365, Processing Time 0.032 seconds

Spatial Information Based Simulator for User Experience's Optimization

  • Bang, Green;Ko, Ilju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.97-104
    • /
    • 2016
  • In this paper, we propose spatial information based simulator for user experience optimization and minimize real space complexity. We focus on developing simulator how to design virtual space model and to implement virtual character using real space data. Especially, we use expanded events-driven inference model for SVM based on machine learning. Our simulator is capable of feature selection by k-fold cross validation method for optimization of data learning. This strategy efficiently throughput of executing inference of user behavior feature by virtual space model. Thus, we aim to develop the user experience optimization system for people to facilitate mapping as the first step toward to daily life data inference. Methodologically, we focus on user behavior and space modeling for implement virtual space.

Unsupervised feature selection using orthogonal decomposition and low-rank approximation

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a novel unsupervised feature selection method. Conventional unsupervised feature selection method defines virtual label and uses a regression analysis that projects the given data to this label. However, since virtual labels are generated from data, they can be formed similarly in the space. Thus, in the conventional method, the features can be selected in only restricted space. To solve this problem, in this paper, features are selected using orthogonal projections and low-rank approximations. To solve this problem, in this paper, a virtual label is projected to orthogonal space and the given data set is also projected to this space. Through this process, effective features can be selected. In addition, projection matrix is restricted low-rank to allow more effective features to be selected in low-dimensional space. To achieve these objectives, a cost function is designed and an efficient optimization method is proposed. Experimental results for six data sets demonstrate that the proposed method outperforms existing conventional unsupervised feature selection methods in most cases.

Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code (대용량 악성코드의 특징 추출 가속화를 위한 분산 처리 시스템 설계 및 구현)

  • Lee, Hyunjong;Euh, Seongyul;Hwang, Doosung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2019
  • Traditional Malware Detection is susceptible for detecting malware which is modified by polymorphism or obfuscation technology. By learning patterns that are embedded in malware code, machine learning algorithms can detect similar behaviors and replace the current detection methods. Data must collected continuously in order to learn malicious code patterns that change over time. However, the process of storing and processing a large amount of malware files is accompanied by high space and time complexity. In this paper, an HDFS-based distributed processing system is designed to reduce space complexity and accelerate feature extraction time. Using a distributed processing system, we extract two API features based on filtering basis, 2-gram feature and APICFG feature and the generalization performance of ensemble learning models is compared. In experiments, the time complexity of the feature extraction was improved about 3.75 times faster than the processing time of a single computer, and the space complexity was about 5 times more efficient. The 2-gram feature was the best when comparing the classification performance by feature, but the learning time was long due to high dimensionality.

Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks (인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법)

  • 윤태섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

A study on the space kineticism (공간의 키네티시즘에 관한 연구)

  • 임혜선;김주연
    • Korean Institute of Interior Design Journal
    • /
    • no.30
    • /
    • pp.28-34
    • /
    • 2002
  • We need to think that space is not static but dynamic because it becomes wide and narrow, newly appears and disappears by human's behavior. Generally such movement in a space is a thing of feeling and dynamic about movement. But it is extending the experience of the subject by scientific technique's development and anticipation about the feature. The practical movement is actively introduced into architecture and interior design scope and occurs a trial about this movement. By using four elements -a form, hue, movement, light- kineticism becomes visual arts united with art and science. It recovers the art's sociality and arises participation of spectators. In the environment and art field kineticism is not simple ostentation but a current trial for human's mind and sensitivility. Kineticism is four-dimensional space considered by human's experience and is related to an observer, or experiential subject of space. Now the space except human's mind feature re-illuminates kineticism, that is, the field of the formative arts in the early part of the 20th century and gets to be 'the consensus space'.

Face Feature Extraction Method ThroughStereo Image's Matching Value (스테레오 영상의 정합값을 통한 얼굴특징 추출 방법)

  • Kim, Sang-Myung;Park, Chang-Han;Namkung, Jae-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.461-472
    • /
    • 2005
  • In this paper, we propose face feature extraction algorithm through stereo image's matching value. The proposed algorithm detected face region by change the RGB color space of skin color information to the YCbCr color space. Applying eye-template from extracted face region geometrical feature vector of feature about distance and lean, nose and mouth between eye extracted. And, Proposed method could do feature of eyes, nose and mouth through stereo image's matching as well as 2D feature information extract. In the experiment, the proposed algorithm shows the consistency rate of 73% in distance within about 1m and the consistency rate of 52%in distance since about 1m.

  • PDF

Prototype-based Classifier with Feature Selection and Its Design with Particle Swarm Optimization: Analysis and Comparative Studies

  • Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.245-254
    • /
    • 2012
  • In this study, we introduce a prototype-based classifier with feature selection that dwells upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization (PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of a core set of features that constitute a collection of the most meaningful and highly discriminative coordinates of the original feature space. The proposed scheme of feature selection is developed in the wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical experiments show that a suitable selection of prototypes and a substantial reduction of the feature space could be accomplished and the classifier formed in this manner becomes characterized by low classification error. In addition, the advantage of the PSO is quantified in detail by running a number of experiments using Machine Learning datasets.

Anomaly Intrusion Detection Based on Hyper-ellipsoid in the Kernel Feature Space

  • Lee, Hansung;Moon, Daesung;Kim, Ikkyun;Jung, Hoseok;Park, Daihee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1173-1192
    • /
    • 2015
  • The Support Vector Data Description (SVDD) has achieved great success in anomaly detection, directly finding the optimal ball with a minimal radius and center, which contains most of the target data. The SVDD has some limited classification capability, because the hyper-sphere, even in feature space, can express only a limited region of the target class. This paper presents an anomaly detection algorithm for mitigating the limitations of the conventional SVDD by finding the minimum volume enclosing ellipsoid in the feature space. To evaluate the performance of the proposed approach, we tested it with intrusion detection applications. Experimental results show the prominence of the proposed approach for anomaly detection compared with the standard SVDD.

The Extraction of End-Pixels in Feature Space for Remote Sensing Data and Its Applications

  • YUAN Lu;SUN Wei-dong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.136-139
    • /
    • 2004
  • The extraction of 'end-pixels' (i.e. end-members) aims to quantify the abundance of different materials in a single pixel, which becomes popular in the subpixel analysis for hyperspectral dataset. In this paper, we present a new concept called 'End-Pixel of Features (EPF)' to extends the concept of end-pixels for multispectral data and even panchromatic data. The algorithm combines the advantages of previous simplex and clustering methods to search the EPFs in the feature space and reduce the effects of noise. Some experimental results show that, the proposed methodology can be successfully used to hyperspectral data and other remote sensing data.

  • PDF

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.