• 제목/요약/키워드: feature points

검색결과 1,124건 처리시간 0.023초

동적 프로그래밍을 이용한 특징점 정합 (Matching Of Feature Points using Dynamic Programming)

  • 김동근
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.73-80
    • /
    • 2003
  • 본 논문에서는 기준영상과 탐색영상 사이의 대응되는 특징 점을 정합 하는 알고리즘을 제안한다. 두 영상에서 특징 점을 찾기 위하여 Harris의 코너 점 검출기를 사용하였다. 기준영상의 각 특징 점에 대해, 정규상관계수가 임계치 이상인 탐색영상의 특징 점들로 후보 정합 점을 구한다. 최종적으로 동적 프로그래밍을 사용하여 후보 정합 점들 중에서 대응되는 특징 점을 구한다. 실험으로 인위적인 영상과 실제 영상에서 특징 점을 정합 하는 결과를 보였다.

AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템 (Robust Face Recognition System using AAM and Gabor Feature Vectors)

  • 김상훈;정수환;전승선;김재민;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 AAM(Active Appearance Model)과 가버 특징 벡터를 이용한 얼굴 인식 시스템을 제안한다. 가버 특징 벡터를 사용하는 대표적인 얼굴 인식 알고리즘인 EBGM(Elastic Bunch Graph Matching)은 가버 특징 벡터를 추출하기 위해 얼굴 특징점들의 검출을 필요로 한다. 그런데, EBGM에서 사용되는 얼굴 특징점 검출 방법은 가버젯 유사도에 기반하는데 이는 초기점에 민감하다. 잘못된 특징점 검출은 얼굴 인식에 영향을 미친다. AAM은 얼굴 특징점 검출에 효과적인 것으로 알려져 있다. 본 논문에서는 AAM으로 얼굴 특징점들을 대략적으로 추정하고 추정된 특징점들을 초기점으로 하여 가버젯 유사도 기반 특징점 검출방법으로 특징점 검출을 정교화하는 얼굴 특징점 검출 방법과 이에 기반한 얼굴 인식 시스템을 제안한다. 실험을 통해 제안된 특징점 검출 방법을 사용한 얼굴 인식 시스템이 EBGM과 같이 기존 가버젯 유사도만의 얼굴 특징점 검출을 이용한 얼굴 인식 시스템보다 더 나은 성능 개선을 보임을 실험을 통해 확인하였다.

멀티 프레임 기반 건물 인식에 필요한 특징점 분류 (Classification of Feature Points Required for Multi-Frame Based Building Recognition)

  • 박시영;안하은;이규철;유지상
    • 한국통신학회논문지
    • /
    • 제41권3호
    • /
    • pp.317-327
    • /
    • 2016
  • 영상에서 의미 있는 특징점(feature point)의 추출은 제안하는 기법의 성능과 직결되는 문제이다. 특히 나무나 사람 등에서의 가려짐 영역(occlusion region), 하늘과 산 등 객체가 아닌 배경에서 추출되는 특징점들은 의미없는 특징점으로 분류되어 정합과 인식 기법의 성능을 저하시키는 원인이 된다. 본 논문에서는 한 장 이상의 멀티 프레임을 이용하여 건물 인식에 필요한 특징점을 분류하여 인식과 정합단계에서 기존의 일반적인 건물 인식 기법의 성능을 향상시키기 위한 새로운 기법을 제안한다. 먼저 SIFT(scale invariant feature transform)를 통해 일차적으로 특징점을 추출한 후 잘못 정합 된 특징점은 제거한다. 가려짐 영역에서의 특징점 분류를 위해서는 RANSAC(random sample consensus)을 적용한다. 분류된 특징점들은 정합 기법을 통해 구하였기 때문에 하나의 특징점은 여러 개의 디스크립터가 존재하고 따라서 이를 통합하는 과정도 제안한다. 실험을 통해 제안하는 기법의 성능이 우수하다는 것을 보였다.

3차원 정보를 얻기 위한 Rule-Based Stereo Matching Algorithm (A Rule-Based Stereo Matching Algorithm to Obtain Three Dimesional Information)

  • 심영석;박성한
    • 대한전자공학회논문지
    • /
    • 제27권1호
    • /
    • pp.151-163
    • /
    • 1990
  • In this paper, rule-based stereo algorithm is explored to obtain three dimensional information of an object. In the preprocessing of the stereo matching, feature points of stereo images must be less sensitive to noise and well linked. For this purpose, a new feature points detection algorithm is developed. For performing the stereo matching which is most important process of the stereo algorithm, the feature representation of feature points is first described. The feature representation is then used for a rule-based stereo algorithm to determine the correspondence between the input stereo images. Finally, the three dimensional information of the object is determined from the correspondence of the feature points of right and left images.

  • PDF

비젼을 이용한 손 영역 특징 점 추출 (Feature Point Extraction of Hand Region Using Vision)

  • 정현석;주영훈
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.11-16
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

  • PDF

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

포켓과 특징 점을 이용한 3차원 단백질 분자 형상인식 (Shape Recognition of 3-D Protein Molecules Using Feature and Pocket Points)

  • 이항찬
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.75-81
    • /
    • 2011
  • 단백질 분자는 포켓 위치에서 유사한 형상을 갖는 다른 분자와 결합되며, 포켓은 단백질 분자의 형상을 묘사하기 위한 참조 점으로 사용될 수 있다. Harris 검출기는 2 차원이나 3차원 객체의 특징 점을 검출하기 위해 널리 사용된다. 특징 점들은 데이터의 변화율이 높은 영역과 포켓 영역에서 발견된다. 일반적으로 포켓 영역은 함몰된 형태로 존재하기 때문에 이 영역에는 다른 영역에 비해 다수의 특징 점들이 존재한다. 특징 점들을 포함하는 voxel cube를 연속적으로 분할함으로써 포켓 영역을 발견할 수 있었고, 포켓 영역의 중심 좌표와 특징 점들 간의 Euclidean 거리를 계산한 후 이들을 크기순으로 정렬 하였다. 정렬된 거리에 대한 그래프는 단백질 분자의 형상과 특징 점들의 분포에 대한 정보를 제공하므로 단백질 분자를 형상별로 분리 할 수 있었다. 본 연구에서는 인위적인 잡음을 단백질 분자에 추가하여 형상이 왜곡된 분자를 얻었고, 왜곡된 분자에 대해서도 95 % 이상의 정확 도로 형상을 인식 할 수 있었다. 정확한 단백질 분자의 형상 인식은 분자들 간의 결합특성을 예측할 수 있는 중요한 정보를 제공한다.

얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합 (A flexible Feature Matching for Automatic Face and Facial Feature Points Detection)

  • 박호식;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.705-711
    • /
    • 2003
  • 본 논문에서는 자동적으로 얼굴과 얼굴 특징점(FFPs:Facial Feature Points)을 검출하는 시스템을 제안하였다. 얼굴은 Gabor 특징에 의하여 지정된 특징점의 교점 그래프와 공간적 연결을 나타내는 에지 그래프로 표현하였으며 제안된 탄력적 특징 정합은 모델과 입력 영상에 상응하는 특징을 취하였다. 또한, 정합 모델은 국부적으로 경쟁적이고 전체적으로 협력적인 구조를 이룸으로서 영상공간에서 불규칙 확산 처리와 같은 역할을 하도록 하였으며, 복잡한 배경이나 자세의 변화, 그리고 왜곡된 얼굴 영상에서도 원활하게 동작하는 얼굴 식별 시스템을 구성함으로서 제안된 방법의 효율성을 증명하였다.

맥파의 특징점 인식과 파형의 분류에 관한 연구 (The Study on the Feature Point Recognition and Classification of Radial Pulse)

  • 길세기;김낙환;이상민;박승환;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.555-558
    • /
    • 1999
  • In this paper, Ire present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also we specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm. then we classify the shape of radial pulse by existence and position of feature points.

  • PDF