• Title/Summary/Keyword: feature points

Search Result 1,124, Processing Time 0.022 seconds

Matching Of Feature Points using Dynamic Programming (동적 프로그래밍을 이용한 특징점 정합)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper we propose an algorithm which matches the corresponding feature points between the reference image and the search image. We use Harris's corner detector to find the feature points in both image. For each feature point in the reference image, we can extract the candidate matching points as feature points in the starch image which the normalized correlation coefficient goes greater than a threshold. Finally we determine a corresponding feature points among candidate points by using dynamic programming. In experiments we show results that match feature points in synthetic image and real image.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Classification of Feature Points Required for Multi-Frame Based Building Recognition (멀티 프레임 기반 건물 인식에 필요한 특징점 분류)

  • Park, Si-young;An, Ha-eun;Lee, Gyu-cheol;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.317-327
    • /
    • 2016
  • The extraction of significant feature points from a video is directly associated with the suggested method's function. In particular, the occlusion regions in trees or people, or feature points extracted from the background and not from objects such as the sky or mountains are insignificant and can become the cause of undermined matching or recognition function. This paper classifies the feature points required for building recognition by using multi-frames in order to improve the recognition function(algorithm). First, through SIFT(scale invariant feature transform), the primary feature points are extracted and the mismatching feature points are removed. To categorize the feature points in occlusion regions, RANSAC(random sample consensus) is applied. Since the classified feature points were acquired through the matching method, for one feature point there are multiple descriptors and therefore a process that compiles all of them is also suggested. Experiments have verified that the suggested method is competent in its algorithm.

A Rule-Based Stereo Matching Algorithm to Obtain Three Dimesional Information (3차원 정보를 얻기 위한 Rule-Based Stereo Matching Algorithm)

  • 심영석;박성한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.151-163
    • /
    • 1990
  • In this paper, rule-based stereo algorithm is explored to obtain three dimensional information of an object. In the preprocessing of the stereo matching, feature points of stereo images must be less sensitive to noise and well linked. For this purpose, a new feature points detection algorithm is developed. For performing the stereo matching which is most important process of the stereo algorithm, the feature representation of feature points is first described. The feature representation is then used for a rule-based stereo algorithm to determine the correspondence between the input stereo images. Finally, the three dimensional information of the object is determined from the correspondence of the feature points of right and left images.

  • PDF

Feature Point Extraction of Hand Region Using Vision (비젼을 이용한 손 영역 특징 점 추출)

  • Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

Shape Recognition of 3-D Protein Molecules Using Feature and Pocket Points (포켓과 특징 점을 이용한 3차원 단백질 분자 형상인식)

  • Lee, Hang-Chan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Protein molecules are combined with another ones which have similar shapes at pocket positions. The pocket positions can be good references to describe the shapes of protein molecules. Harris corner detector is commonly used to detect feature points of 2 or 3D objects. Feature points can be found on the pocket areas and the points which have high derivatives. Generally speaking, the densities of feature points are relatively high at pocket areas because the shapes of pockets are concave. The pocket areas can be decided by the subdivision of voxel cubes which include feature points. The Euclidean distances between feature points and the central coordinate of the decided pocket area are calculated and sorted. The graph of sorted distances describes the shape of a protein molecule and the distribution of feature points. Therefore, it can be used to classify protein molecules by their shapes. Even though the shapes of protein molecules have been distorted with noises, they can be recognized with the accuracy more than 95 %. The accurate shape recognition provides the information to predict the binding properties of protein molecules.

A flexible Feature Matching for Automatic Face and Facial Feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.705-711
    • /
    • 2003
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in !be image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

The Study on the Feature Point Recognition and Classification of Radial Pulse (맥파의 특징점 인식과 파형의 분류에 관한 연구)

  • 길세기;김낙환;이상민;박승환;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.555-558
    • /
    • 1999
  • In this paper, Ire present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also we specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm. then we classify the shape of radial pulse by existence and position of feature points.

  • PDF