• 제목/요약/키워드: fault detection and isolation (FDI)

검색결과 77건 처리시간 0.026초

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.

Satellite Fault Detection and Isolation Scheme with Modified Adaptive Fading EKF

  • Lim, Jun Kyu;Park, Chan Gook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1401-1410
    • /
    • 2014
  • This paper presents a modified adaptive fading EKF (AFEKF) for sensor fault detection and isolation in the satellite. Also, the fault detection and isolation (FDI) scheme is developed in three phases. In the first phase, the AFEKF is modified to increase sensor fault detection performance. The sensor fault detection and sensor selection method are proposed. In the second phase, the IMM filer with scalar penalty is designed to detect wherever actuator faults occur. In the third phase of the FDI scheme, the sub-IMM filter is designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease the number of filters for detecting sensor fault. Also, the proposed scheme can classify fault detection and isolation as well as fault type identification.

저궤도 인공위성의 센서 및 구동기 통합 고장검출 및 분리 기법 (An Integrated Fault Detection and Isolation Method for Sensors and Actuators of LEO Satellite)

  • 임준규;이준한;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1117-1124
    • /
    • 2011
  • An integrated fault detection and isolation method is proposed in this paper. The main objective of this paper is development fault detection, isolation and diagnosis algorithm based on the DKF (Decentralized Kalman Filter) and the bank of IMM (Interacting Multiple Model) filters using penalty scalar for both partial and total faults and the outlier detection algorithm for preventing false alarm also included. The proposed FDI (Fault Detection and Isolation) scheme is developed in four phases. In the first phase, the outlier detection filter is designed to prevent false alarm as a pre-filter. In the second phases, two local filters and master filter are designed to detect sensor faults. In the third phases, the proposed FDI scheme checks sensor residual to isolate sensor faults and 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the last phases, four filters are designed to identify the fault type which is either the total fault or partial fault. The developed scheme can deal with not only sensor and actuator faults, but also preventing false alarm. An important feature of the proposed FDI scheme can decreases fault isolation time and figure out not only fault detection and isolation but also fault type identification. To verify the proposed FDI algorithm performance, the Simulator is also developed under the Matlab/Simulink environment.

Two-Faults Detection and Isolation Using Extended Parity Space Approach

  • Lee, Won-Hee;Kim, Kwang-Hoon;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a new FDI(Fault Detection and Isolation) method, which is called EPSA(Extended Parity Space Approach). This method is particularly suitable for fault detection and isolation of the system with one faulty sensor or two faulty sensors. In the system with two faulty sensors, the fault detection and isolation probability may be decreased when two faults are occurred between the sensors related to the large fault direction angle. Nonetheless, the previously suggested FDI methods to treat the two-faults problem do not consider the effect of the large fault direction angle. In order to solve this problem, this paper analyzes the effect of the large fault direction angle and proposes how to increase the fault detection and isolation probability. For the increase the detection probability, this paper additionally considers the fault type that is not detected because of the cancellation of the fault biases by the large fault direction angle. Also for the increase the isolation probability, this paper suggests the additional isolation procedure in case of two-faults. EPSA helps that the user can know the exact fault situation. The proposed FDI method is verified through Monte Carlo simulation.

함수 관측자를 이용한 고장검출식별기법에 관한 연구 (On the Fault Detection and Isolation Systems using Functional Observers)

  • 이기상;류지수
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.883-890
    • /
    • 2003
  • Two GOS (Generalized Observer Scheme) type Fault Detection Isolation Schemes (FDIS), employing the bank of unknown input functional observers (UIFO) as a residual generator, are proposed to make the practical use of the multiple observer based FDIS. The one is IFD (Instrument Fault Detection) scheme and the other is PFD (Process Fault Detection) scheme. A design method of UIFO is suggested for robust residual generation and reducing the size of the observer bank. Several design objectives that can be achieved by the FDI schemes and the design methods to meet the objectives are described. An IFD system is constructed for the Boeing 929 Jetfoil boat system to show the effectiveness of the propositions. Major contributions of this paper are two folds. Firstly, the proposed UIFO approaches considerably reduce the size of residual generator in the GOS type FDI systems. Secondly, the FDI schemes, in addition to the basic functions of the conventional observer-based FDI schemes, can reconstruct the failed signal or give the estimates of fault magnitude that can be used for compensating fault effects. The schemes are directly applicable to the design of a fault tolerant control systems.

2 단계 상호간섭 다중모델을 이용한 인공위성 고장 검출 (Satellite Fault Detection and Isolation Using 2 Step IMM)

  • 이준한;박찬국;이달호
    • 한국항공우주학회지
    • /
    • 제39권2호
    • /
    • pp.144-152
    • /
    • 2011
  • 본 논문에서는 인공위성 자세제어 시스템의 고장 검출 기법을 제시하였다. 논문에서는 상호간섭 다중모델을 기반으로 벌점을 이용하여 인공위성 자세 시스템 중 구동기의 완전 고장과 구동력 저하 고장을 검출하였다. 제안한 고장 검출 기법은 2단계로 구분되는데, 먼저 11개의 구동기 고장 관련 모델을 구성하여 구동기 고장 검출을 수행한 후, 구동기의 고장이 검출되면 구동기의 고장 특성에 관련된 하위 모델을 생성하여 실제 발생한 고장이 완전 고장인지 구동력 저하 고장인지를 구분하게 된다. 또한 기존에 제안된 상호간섭 다중모델을 이용한 고장 검출 기법과 비교한 결과, 본 논문에서는 병렬로 구성되었던 고장 모델들을 2단계로 구성하고 각 단계별로 차등화된 벌점을 이용함으로써 구동기 고장 검출 시간을 줄였을 뿐만 아니라, 고장의 특성까지 빠르게 구분할 수 있는 장점이 있음을 확인 하였다.

Fault Detection and Isolation using navigation performance-based Threshold for Redundant Inertial Sensors

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2576-2581
    • /
    • 2003
  • We consider fault detection and isolation (FDI) problem for inertial navigation systems (INS) which use redundant inertial sensors and propose an FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation, and improve correct isolation. We suggest optimal isolation threshold based on navigation performance, and suggest optimal sample number to obtain short detection time and to enhance detectability of faults little larger than threshold.

  • PDF

Combining approach in Fault Detection and Isolation for GPS applications

  • Chey, Jay-Won;Jee, Gyu-In;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1949-1952
    • /
    • 2004
  • GPS is widely used for outdoor positioning in many applications. But it is not suitable for positioning in an obstacle environment such as urban area, tunnels and so on, due to variable signal level. So new technology of the positioning is required to provide the consistent error level regardless of any changes in any environment. Abrupt changes of GPS signal can be detected by various fault detection and isolation methods. Conventional FDI (Fault Detection and Isolation) methods are categorized into two approaches. One approach is the snapshot method that uses measurements only at present step. The other approach is the filtering method that uses measurements stacked from previous step to present step. The FDI result of the snapshot method can be considered reliable independently with previous results and the FDI result of the filtering method is more reliable and detection time is a little longer. Therefore combining approach of two methods is proposed for increasing FDI performance in this paper. Three approaches that are the snapshot method, the filtering method and the combining method are compared to show the probability of correct FDI in simulations. The combining approach presents best result of FDI among them and shows the consistent accuracy irrespective of any changes in outdoor environment.

  • PDF

일반공산비 기법을 이용한 INS/GPS 통합시스템의 고장 검출 및 격리 (Fault Detection and Isolation of Integrated Inertial/Satellite Navigation Systems Using the Generalized Likelihood Ratio Test)

  • 신정훈;임유철;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.55-55
    • /
    • 2000
  • This paper presents a fault detection and isolation(FDI) method based on Ceneralized Likelihood Ratio(GLR) test for the tightly coupled INS/GPS. State and measurement GLR tests detect INS or GPS fault. Once the fault is detected, Multi-hypothesized GLR scheme performs the fault isolation between INS and GPS and find which satellite malfunctions. Simulation results show that the GLR method is effective enough to detect and isolate a fault of the integrated navigation system.

  • PDF

레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법 (Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect)

  • 김응주;김용훈;최민준;송진우
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.