• Title/Summary/Keyword: fault detection & diagnosis

Search Result 461, Processing Time 0.025 seconds

A Study on Data Pre-filtering Methods for Fault Diagnosis (시스템 결함원인분석을 위한 데이터 로그 전처리 기법 연구)

  • Lee, Yang-Ji;Kim, Duck-Young;Hwang, Min-Soon;Cheong, Young-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.97-110
    • /
    • 2012
  • High performance sensors and modern data logging technology with real-time telemetry facilitate system fault diagnosis in a very precise manner. Fault detection, isolation and identification in fault diagnosis systems are typical steps to analyze the root cause of failures. This systematic failure analysis provides not only useful clues to rectify the abnormal behaviors of a system, but also key information to redesign the current system for retrofit. The main barriers to effective failure analysis are: (i) the gathered data (event) logs are too large in general, and further (ii) they usually contain noise and redundant data that make precise analysis difficult. This paper therefore applies suitable pre-processing techniques to data reduction and feature extraction, and then converts the reduced data log into a new format of event sequence information. Finally the event sequence information is decoded to investigate the correlation between specific event patterns and various system faults. The efficiency of the developed pre-filtering procedure is examined with a terminal box data log of a marine diesel engine.

Study on NDT Fault Diagnosis of the Ball Bearing under Stage of Abrasion by Infrared Thermography (마모 단계의 볼 베어링에 대한 적외선 열화상 비파괴 결함 진단 연구)

  • Seo, Jin-Ju;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • For fault detection about the abrasion stage of rotational machineries under the dynamic loading conditions unlike the traditional diagnosis method used in the past decade, the infrared thermographic method with its distinctive advantages in non-contact, non-destructive, and visible aspects is proposed. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiments were conducted as an alternative way to proceeding the traditional fault monitoring on spectrum analyzer. As results, the thermographic experiment was compared with the traditional vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results obtained as NDT, the temperature characteristics and abnormal fault detections of the ball bearing according to the abrasion stage were analyzed.

Analysis of the Bearing Fault Effect on the Stator Current of an AC Induction Motor (유도전동기의 고정자 전류에 미치는 베어링 고장 영향 분석)

  • Kim, Jae-Hoon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.635-640
    • /
    • 2014
  • Detection and diagnosis of incipient bearing fault in an induction motor is important for the prevention of serious motor failure. This paper presents an analysis of the effect of a faulty bearing on the stator current of an induction motor. A bearing fault leads to torque oscillations which result in phase modulation of the stator current. Since the torque oscillations cause specific frequency components at the stator current spectrum to rise sharply, the bearing fault can be detected by checking out the faultrelated frequency. In this paper, a mathematical model of the load torque oscillation caused by a bearing fault is presented. The proposed model can be used to analyze the physical phenomenon of a bearing fault in an induction motor. In order to represent the bearing fault effect, the proposed model is combined with an existing model of vector-controlled induction motors. A set of simulation results demonstrate the effectiveness of the proposed model and represent that bearing fault detection using a stator current is useful for vector-controlled induction motors.

An Experimental Study on Fault Detection in the HVAC Simulator (공조 시뮬레이터를 이용한 고장진단 실험 연구)

  • Tae, Choon-Seob;Yang, Hoon-Cheul;Cho, Soo;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.807-813
    • /
    • 2006
  • The objective of this study is to develop a rule-based fault detection algorithm and an experimental verification using an artificial air handling unit. To develop an analytical algorithm which precisely detects a tendency of faulty component, energy equations at each control volume of AHU were applied. An experimental verification was conducted on the HVAC simulator. The rule based FDD algorithm isolated a faulted sensor from HVAC components in summer and winter conditions.

  • PDF

The detection and diagnosis model for small scale MSLB accident

  • Wang, Meng;Chen, Wenzhen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3256-3263
    • /
    • 2021
  • The main steam line break accident is an essential initiating event of the pressurized water reactor. In present work, the fuzzy set theory and the signal-based fault detection method has been used to detect the occurrence and diagnosis of the location and break area for the small scale MSLB. The models are validated by the AP1000 accident simulator based on MAAP5. From the test results it can be seen that the proposed approach has a rapid and proper response on accident detection and location diagnosis. The method proposed to evaluate the break area shows good performances for small scale MSLB with the relative deviation within ±3%.

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

Indirect Fault Detection Method for an Onboard Degaussing Coil System Exploiting Underwater Magnetic Signals

  • Jeung, Giwoo;Choi, Nak-Sun;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.72-77
    • /
    • 2014
  • This paper proposes an indirect fault detection method for an onboard degaussing coil system, installed to reduce the underwater magnetic field from the ferromagnetic hull. The method utilizes underwater field signals measured at specific magnetic treatment facilities instead of using time-consuming numerical field solutions in a three-dimensional space. An equivalent magnetic charge model combined with a material sensitivity formula is adopted to predict fault coil locations. The purpose of the proposed method is to yield reliable data on the location and type of a coil breakdown even without information on individual degaussing coils, such as dimension, location and number of turns. Under several fault conditions, the method is tested with a model ship equipped with 20 degaussing coils.

Application of Envelop Analysis and Wavelet Transform for Detection of Gear Failure (기어 결함 검출을 위한 포락처리와 웨이블릿 변환의 적용)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.905-910
    • /
    • 2008
  • Vibration analysis is widely used in machinery diagnosis and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local fault, in local fault of gearboxes using the wavelet transform. Moreover, envelop analysis is well known as useful tool for the detection of rolling element bearing fault. In this paper, a acoustic emission (AE) sensor is employed to detect gearbox damage by installing them around bearing housing at driven-end side. Signal processing is conducted by wavelet transform and enveloping to detect her fault all at once gearbox using AE signal.

Sensor Fault-tolerant Controller Design on Gas Turbine Engine using Multiple Engine Models (다중 엔진모델을 이용한 센서 고장허용 가스터빈 엔진제어기 설계)

  • Kim, Jung Hoe;Lee, Sang Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.56-66
    • /
    • 2016
  • Robustness is essential for model based FDI (Fault Detection and Isolation) and it is inevitable to have modeling errors and sensor signal noises during the process of FDI. This study suggests an improved method by applying NARX (Nonlinear Auto Regressive eXogenous) model and Kalman estimator in order to cope with problems caused by linear model errors and sensor signal noises in the process of fault diagnoses. Fault decision is made by the probability of the trend of gradually accumulated errors applying Fuzzy logic, which are robust to instantaneous sensor signal noises. Reliability of fault diagnosis is verified under various fault simulations.