• Title/Summary/Keyword: fault correction

Search Result 70, Processing Time 0.031 seconds

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

Technology Trends of Fault-tolerant Quantum Computing (결함허용 양자컴퓨팅 시스템 기술 연구개발 동향)

  • Hwang, Y.;Kim, T.W.;Baek, C.H.;Cho, S.U.;Kim, H.S.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Similar to present computers, quantum computers comprise quantum bits (qubits) and an operating system. However, because the quantum states are fragile, we need to correct quantum errors using entangled physical qubits with quantum error correction (QEC) codes. The combination of entangled physical qubits with a QEC protocol and its computational model are called a logical qubit and fault-tolerant quantum computation, respectively. Thus, QEC is the heart of fault-tolerant quantum computing and overcomes the limitations of noisy intermediate-scale quantum computing. Therefore, in this study, we briefly survey the status of QEC codes and the physical implementation of logical qubit over various qubit technologies. In summary, we emphasize 1) the error threshold value of a quantum system depends on the configurations and 2) therefore, we cannot set only any specific theoretical and/or physical experiment suggestion.

The Development of an Algorithm for the Correction of Errors in the Phase Current of the Protective Relay on Distribution System Interconnected with Distributed Generations (분산전원 연계선로에서 보호계전기의 상전류 오차보정 알고리즘 개발)

  • Shin, Dong-Yeol;Yun, Donghyun;Cha, HanJu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1604-1609
    • /
    • 2013
  • When the ground fault on the power side occurs on distribution system interconnected with distributed generations, the abnormal current is generated in the neutral conductor by the connection type and the iron core structure of transformers for the interconnection of distributed power supplies due to the unbalanced voltage of the system, and subsequently the false operation of the protective relay on the load side occurs. Herein, this paper proposes the method to correct errors in the phase current to prevent the false operation of the protective relay by applying p-q theory and presents the simulation result of the error correction algorithm using PSCAD/EMTDC.

An Optimal Scrubbing Scheme for Auto Error Detection & Correction Logic (자가 복구 오류 검출 및 정정 회로 적용을 고려한 최적 스크러빙 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1101-1105
    • /
    • 2011
  • Radiation particles can introduce temporary errors in memory systems. To protect against these errors, so-called soft errors, error detection and correcting codes are used. In addition, scrubbing is applied which is a fundamental technique to avoid the accumulation of soft errors. This paper introduces an optimal scrubbing scheme, which is suitable for a system with auto error detection and correction logic. An auto error detection and correction logic can correct soft errors without CPU's writing operation. The proposed scrubbing scheme leads to maximum reliability by considering both allowable scrubbing load and the periodic accesses to memory by the tasks running in the system.

Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing (결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향)

  • E.Y. Cho;J.H. On;C.Y. Kim;G. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.

Application of Multiple Parks Vector Approach for Detection of Multiple Faults in Induction Motors

  • Vilhekar, Tushar G.;Ballal, Makarand S.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.972-982
    • /
    • 2017
  • The Park's vector of stator current is a popular technique for the detection of induction motor faults. While the detection of the faulty condition using the Park's vector technique is easy, the classification of different types of faults is intricate. This problem is overcome by the Multiple Park's Vector (MPV) approach proposed in this paper. In this technique, the characteristic fault frequency component (CFFC) of stator winding faults, rotor winding faults, unbalanced voltage and bearing faults are extracted from three phase stator currents. Due to constructional asymmetry, under the healthy condition these characteristic fault frequency components are unbalanced. In order to balanced them, a correction factor is added to the characteristic fault frequency components of three phase stator currents. Therefore, the Park's vector pattern under the healthy condition is circular in shape. This pattern is considered as a reference pattern under the healthy condition. According to the fault condition, the amplitude and phase of characteristic faults frequency components changes. Thus, the pattern of the Park's vector changes. By monitoring the variation in multiple Park's vector patterns, the type of fault and its severity level is identified. In the proposed technique, the diagnosis of faults is immune to the effects of unbalanced voltage and multiple faults. This technique is verified on a 7.5 hp three phase wound rotor induction motor (WRIM). The experimental analysis is verified by simulation results.

Formal Verification of PLC Program Safety in Manufacturing Automation System (생산자동화시스템 PLC 제어프로그램의 안전성 정형검증에 관한 연구)

  • Park, Chang Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.179-192
    • /
    • 2015
  • In an automated industry PLC plays a central role to control the automation system. Therefore, fault free operation of PLC controlled automation system is essential in order to maximize a firm's productivity. A prior test of control system is a practical way to check fault operations, but it is a time consuming job and can not check all possible fault operation. A formal verification of PLC program could be a best way to check all possible fault situation. Tracing the history of the study on formal verification, we found three problems, the first is that a formal representation of PLC control system is incomplete, the second is a state explosion problem and the third is that the verification result is difficult to use for the correction of control program. In this paper, we propose a transformation method to reproduce the control system correctly in formal model and efficient procedure to verify and correct the control program using verification result. To demonstrate the proposed method, we provided a suitable case study of an automation system.

Research on Algorithm and Operation Boundary for Fault Detection of Onboard GNSS Receiver (항공기 탑재용 GNSS 수신기 고장검출 알고리즘 및 운용범위 연구)

  • Nho, Hyung-Tae;Ahn, Jong-Sun;Sung, Sang-Kyung;Jun, Hyang-Sig;Yeom, Chan-Hong;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • In this paper, we proposed a algorithm and an operation boundary for fault detection of a onboard GNSS receiver. After aircraft exchange corrections computed by an aircraft receiver, a faulty aircraft receiver is detected by checking consistency of correction. For this purpose, PRC residual is used as the test statistic for fault detection of the onboard GNSS receiver. And operation boundaries are set by using DGPS position error increase with respect to the distance from a reference station. If the fault detection is performed by using aircraft only in operation boundary, the more accurate fault detection can be possible.

Correction of the delay faults of command reception in satellite command processor (위성용 명령 처리기의 명령 입수 지연 오류 정정)

  • Koo, Cheol-Hea;Choi, Jae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.194-196
    • /
    • 2005
  • The command processor in satellite handles the capability of the process of command transmitted from ground station and deliver the processed data to on board computer in satellite. The command processor is consisted of redundant box to increase the reliability and availability of the capability. At each command processor, the processing time of each command processor is different, so the mismatch of processing time makes it difficult to timely synchronize the reception to on board computer and even will be became worse under the command processor's fault. To minimize the tine loss induced by the command processor's fault on board computer must analyze the time distribution of command propagation. This paper presents the logic of minimizing the delay error of command propagation the logic of analyzing the output of command processor.

  • PDF

A Study on Software Reliability Growth Model for Isolated Testing-Domain under Imperfect Debugging (불완전수정에서 격리된 시험영역에 대한 소프트웨어 신뢰도 성장모형 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.73-78
    • /
    • 2006
  • In this paper, we propose a software reliability growth model based on the testing domain in the software system, which is isolated by the executed test cases in software testing. In particular, our model assumes an imperfect debugging environment in which new faults are introduced in the fault-correction process, and is formulated as a nonhomogeneous Poisson process(NHPP). Further, it is applied to fault-detection data, the results of software reliability assessment are shown, and comparison of goodness-of-fit with the existing software reliability growth model is performed.