• 제목/요약/키워드: fault classification

검색결과 307건 처리시간 0.024초

음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출 (Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling)

  • 장원철;서준상;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다.

LAN을 이용한 분산전원 연계 계통의 보호 (LAN-Based Protective Relaying for Interconnect Protection of Dispersed Generators)

  • 정태영;백영식
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.491-497
    • /
    • 2007
  • As dispersed generators was driven in condition interconnecting with utility, it could cause a variety of new effects to the original distribution system that was running as considered only the one-way power flow. Therefore, the protection devices that is builted in distribution system should be designed to be able to operate with disposing of not only a fault of the generator, but also utility condition. Especially, the fault of the feeder interconnected with Dispersed Generator can cause the islanding phenomenon of open DG(Dispersed Generators). This phenomenon has many problems such as a machinery damage, electricity qualify degradation and a difficulty of the system recovery. In the fault therefore, we must separate Dispersed Generator from the system quickly. In this paper, for the fault classification of the interconnected DG and the outside feeder we judge the fault of the interconnected DG and the outside feeder in HMI through data provided by IED(Intelligent Electronic Device) on the network and decide whether it operates or not by sending the result to each relay.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.

자동차의 입출력 신호 검출을 통한 전자제어 시스템의 고장예측기술 (Failure Forecasting Technology of Electronic Control System Using Automobile Input/Output Signal Detection)

  • 이중순;손일문
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.59-64
    • /
    • 2009
  • Electronic control system of the engine is composed of various sensors and actuators, This paper is concerned with fault analysis for the stable operation of it. We suggest the technology that can systematically and reliably analyze fault causes of sensors and actuators by using the fault generating program. In results, we can acquire the systematic road map of occurring faults as well as the valuable information related to the operations of sensors and actuators. These results should be very useful to get the classification of fault causes, develop an electronic control system of engine, and review control strategies of it.

  • PDF

거리계전기법을 위한 신경회로망 고장패턴 추정기 (Neural Network Fault Patterns Estimator for the Digital Distance Relaying Technique)

  • 정호성;전병준;신명철;이복구;윤석무;박철원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.193-196
    • /
    • 1997
  • This paper presents the Fault Pattern Estimator(FPE) using the neural network for the protection of the T/L. The proposed FPE has two neural network parts of the fault-types classification and the fault-location estimation. It can detect the fault signals more Quickly and accurately. To prove the performance of the FPE, we have tested using a relaying signals obtained from the EMTP simulations.

  • PDF

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

An Effective Test and Diagnosis Algorithm for Dual-Port Memories

  • Park, Young-Kyu;Yang, Myung-Hoon;Kim, Yong-Joon;Lee, Dae-Yeal;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제30권4호
    • /
    • pp.555-564
    • /
    • 2008
  • This paper proposes a test algorithm that can detect and diagnose all the faults occurring in dual-port memories that can be accessed simultaneously through two ports. In this paper, we develop a new diagnosis algorithm that classifies faults in detail when they are detected while the test process is being developed. The algorithm is particularly efficient because it uses information that can be obtained by test results as well as results using an additional diagnosis pattern. The algorithm can also diagnose various fault models for dual-port memories.

  • PDF

Research on Fault Diagnosis of Wind Power Generator Blade Based on SC-SMOTE and kNN

  • Peng, Cheng;Chen, Qing;Zhang, Longxin;Wan, Lanjun;Yuan, Xinpan
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.870-881
    • /
    • 2020
  • Because SCADA monitoring data of wind turbines are large and fast changing, the unbalanced proportion of data in various working conditions makes it difficult to process fault feature data. The existing methods mainly introduce new and non-repeating instances by interpolating adjacent minority samples. In order to overcome the shortcomings of these methods which does not consider boundary conditions in balancing data, an improved over-sampling balancing algorithm SC-SMOTE (safe circle synthetic minority oversampling technology) is proposed to optimize data sets. Then, for the balanced data sets, a fault diagnosis method based on improved k-nearest neighbors (kNN) classification for wind turbine blade icing is adopted. Compared with the SMOTE algorithm, the experimental results show that the method is effective in the diagnosis of fan blade icing fault and improves the accuracy of diagnosis.

LPC 분석 기법 및 EM 알고리즘 기반 잡음 환경에 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류 (High-Reliable Classification of Multiple Induction Motor Faults using Robust Vibration Signatures in Noisy Environments based on a LPC Analysis and an EM Algorithm)

  • 강명수;장원철;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.21-30
    • /
    • 2014
  • 최근 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 결함으로 인한 피해를 최소화하기 위해 유도 전동기의 결함 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 따라서 본 논문에서는 유도전동기의 결함을 조기에 식별하기 위해 선형예측 코딩(LPC)기법과 Expectation Maximization(EM) 알고리즘을 이용하여 각각의 유도 전동기 고장의 스펙트럼 포락처리 모델을 추정한다. 앞서 두 기법을 사용하여 추정된 고장 유형 모델과 마할라노비스 거리(MD) 기법을 사용하여 유도전동기의 결합을 분류한다. 또한 제안된 알고리즘 성능을 평가하기 위해 기존에 제안된 진동 신호의 특징을 이용한 유도 전동기 결함 분류 알고리즘과 분류 정확도 측면에서 성능을 검증하였다. 실험 결과, 제안하는 알고리즘은 잡음이 없는 환경 및 잡음이 섞인 환경에서도 높은 분류 성능을 보였다.