• Title/Summary/Keyword: fatigue of concrete

Search Result 475, Processing Time 0.022 seconds

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.

Experimental Investigation on Fatigue Behavior of Concrete Slab Tracks under Railway Loads (철도하중에 대한 콘크리트 슬래브궤도의 피로거동에 관한 실험적 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.639-642
    • /
    • 2003
  • In this paper, fatigue behavior of concrete slab tracks under railway loads by experimental method is discussed. The addition of steel fibers to concrete mix has been receiving more attention as a way of improving the crack behavior of concrete beams an slabs tacks. This study two objectives: 1) to observe the fatigue behavior of fiber reinforced concrete slab in labor, and 2) to present crack propagation and deflection of fiber reinforced concrete slab track under railway loads in the Waghauser test line. Nine beams, two slabs and one test track were experimentally tested.

  • PDF

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

A Fatigue Analysis of Prestressed Concrete Composite Girders with Time Dependent Effects (시간에 따른 영향을 고려한 프리스트레스트 콘크리트 합성 거더의 피로해석)

  • 김지상;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.126-130
    • /
    • 1992
  • Recently, fatigue problem become a critical issue in the design of prestressed concrete bridges due to the increase of traffic volumes and use of high-strength materials. Most existing studies are mainly concerned with the fatigue behavior of component materials only such as concrete, reinforcing bars, and prestressing steels and few studies exist that deals with the fatigue behavior of bridge members. An improved analytic formulation for both uncracked and cracked prestressed concrete composite section with cyclic creep effect is developed to take into account the change of neutral axis with crack propagation. The procedure also enables to investigate serviceability limit states, deflection and crack width. The present study allows more realistic analysis and design of prestressed concrete composite girder bridges under fatigue loadings.

  • PDF

A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete (하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구)

  • Kim, Nam-Wook;Choi, Go-Bong;Kim, Han-Sang;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.127-135
    • /
    • 2005
  • Recently, as the concrete structures are becoming bigger, higher, longer and more special, high strength concrete is demanded. But the fracture behavior of high strength concrete is shown more brittle than that of the normal strength concrete. Therefore, in order to improve the brittle fracture behavior and crack propagation resistance, ACI Committee363 has been recommend the use of fiber reinforced concrete which showed superior property against the crack propagation resistance. On the other hand, bridges, concrete pavements and railroads etc. have been exposed to the repetition loading at least several million times during the service life. Therefore, fatigue load is dominantly most of all, but it is very difficult to estimate the suitable fatigue strength calculated by fatigue load. In this research, in order to examine the fatigue behavior of hybrid fiber reinforced high strength concrete, the static and fatigue tests were carried out. And from these results, it was estimated the fatigue strength of hybrid fiber reinforced high strength concrete.

Fatigue of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • This is the second of two part series on experimental studies of grout type transverse joints. In this paper, grout-type transverse joints between precast concrete slabs are tested to study the fatigue behavior. The tests are per-formed with loading equipment designed and constructed especially in the lab to introduce shear fatigue failures on the joints of the test specimens with repeated loads. Non-prestressed as well as prestressed specimens are selected based on static tests and these specimens are studied to identify the effect of prestress on the fatigue strength of the grout type joint. A comparison between prestressed and non-prestressed specimens indicates that longitudinal prestressing is an effective method to increase fatigue strength of the transverse joints. Based on the fatigue test, a rational estimation of the fatigue strength is proposed to aid design of the grout-type transverse joints.

  • PDF

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.

Fatigue failure of decks in highway bridge (도로교 RC 바닥판의 피로파괴에 관한 연구)

  • 김경찬;사림신장;정상정일;권혁문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.169-175
    • /
    • 1993
  • Possibility of fatigue failure in punching shear of reinforced concrete decks of highway bridges is analytically investigated by applying Matsui et al.'s experimental finding to models of 2-meter span decks designed in compliance with previous and current codes. Decks made of concrete of compressive strength of 240㎏/㎠ showed longer fatigue life than decks made of 210㎏/㎠ concrete at the same Md/U rations ; higher Md/U ratio resulted in linger fatigue life but its effect is insignificant in decks having effective depths of 14 and 15cm. Decks designed to higher load factors as specified by current codes showed longer fatigue life than decks designed to lower load factors specified by previous codes ; yet fatigue failure appeared to occur in both decks within their normal life span, thus indicating need for redefining the minimum deck thickness.

  • PDF

Fatigue Analysis of Prestressed Concrete Composite Girder Bridges (프리스트레스트 콘크리트 합성거더 교량의 피로해석)

  • 김지상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.135-144
    • /
    • 1993
  • A fatigue analysis procedure for prestressed concrete composite girder bridges is established, which includes the time-dependent effects of component materials. The procedure can take into account the movement of neutral axis depth as crack develops and give quite good agreement with experimental results available. It is also assured that Korean Standard prestressed concrete composite girder has enough fatigue resistance. The procedure in this paper gives a way to express the fatigue capacity of prestressed concrete beams in the form of S-N curve, which can be utilized under variable amplitude fatigue load.