• 제목/요약/키워드: fatigue load test

검색결과 600건 처리시간 0.03초

줄눈콘크리트 포장 가로줄눈부의 피로수명 (The Fatigue Life of Transverse Joint of Concrete Pavement)

  • 황승의;송준호;고영주;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.199-206
    • /
    • 2003
  • This paper presents the fatigue life of transverse joint of concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometric load, material similitude, which are variables to the skew angel of transverse joint. From the test results by fatigue load 700kgf applied, we can have that the fatigue life of transverse joint with skew angle is better than that of transverse joint without skew angle. In addition, we can have that the fatigue life of skewed transverse joint with angle of 10 degree is better than that of skewed transverse joint with angle of 20 degree.

신형식 PSC거더의 피로 성능 (Fatigue performance of a new type PSC girder)

  • 최상현;이창수;김태균;어철수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.965-972
    • /
    • 2011
  • Unlike metallic materials, the importance of fatigue performance of concrete has been ignored. However, it is reported that environmental effects, if it cause deterioration, may increase the risk of fatigue failure under repeated loadings. In case of railroad bridges, the risk may increase due to highly periodic, repetitive, heavier nature of train load, which runs through the fixed passage called the track. Especially, when new material or structure is implemented for a main bridge member, experimental validation should be performed to avoid damage or failure due to unexpected behavior. In this paper, the fatigue performance of an IT girder is examined via a repeated loading test. The IT girder is a new type of a prestressed concrete (PSC) girder with two prestressed H-beams in the top of the girder, which provide additional sectional capacity, and it can be applied to the span longer than 30m which is a typical limit for a usual PSC girder. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the cyclic load two million times. The fatigue performance of the girder is examined according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

  • PDF

알루미늄 철도차량 차체 용접부의 강도 특성에 관한 연구 (A Study on the Strength Characteristics of Welded Joints in Aluminum Carbody of Rolling Stock)

  • 서승일
    • Journal of Welding and Joining
    • /
    • 제23권1호
    • /
    • pp.35-40
    • /
    • 2005
  • In this paper, static and fatigue load tests for the specimens, components and carbody were carried out to investigate the strength of welded joints in aluminum rolling stock. Tensile test results showed that the static strength of welded joint for the heat-treated alloy is reduced significantly and fatigue strength data are scattered by the welding imperfections. Component and whole carbody fatigue test results showed agreements with the design fatigue strength standards for specimens of the same joint detail. Test results revealed that full penetration welding and strict management of welding procedure are crucial for securing the strength of welded joint in aluminum carbody.

2축 하중주파수가 피로균열진전거동에 미치는 영향 (The Effect of Behavior Fatigue Crack Propagation on 2-Axle Load Frequency)

  • 김상희;;최성대
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.78-84
    • /
    • 2015
  • The stress state acting on mechanical parts and structures is generally mixed stress. This complex stress state, which is subject to changes in the environment, will produce many. Cars running on roads with different road conditions will subject the automotive parts to combined stress state. In the x direction and the y direction, a different amplitude and frequency of the fatigue load can be present. However, the load amplitude for Mode I and Mode II in a 2-axis fatigue test is limited to a constant ratio; the load frequency is always the same for any mode. In this paper, it is verified how the variation of the load frequency for mode II affects the behavior of fatigue crack propagation under mixed mode.

윤하중조건에서의 프리캐스트 콘크리트 바닥판 피로특성 (Fatigue Characteristics of Precast Concrete Bridge Decks under Wheel Load Condition)

  • 주봉철;박흥석;김영진;송재준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.394-397
    • /
    • 2006
  • For checking fatigue safety and endurance of precast concrete deck and loop joint system in the steel plate girder composite bridge, the test composite bridge model was made for the fatigue experiment by the wheel load machine. The fatigue tests of 1,000,000 cycles were implemented according to wheel load condition of DB24 rear axle of Korea Highway Design Code. From the test results, the loop joint system for the precast deck has a sufficient flexural capacity. Although a little lower longitudinal continuity capacity is evaluated than general sound cast-in-place RC bridge deck, there is no problem about the safety. The overall fatigue level of safety defined by the code is satisfied.

  • PDF

냉간단조 베벨기어의 굽힘피로강도 평가 (An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear)

  • 김재훈;사정우;김덕회;이상연
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발 (Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory)

  • 손기수;곽희성;강창훈;조준행
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

누적손상이론을 이용한 기계류부품의 가속수명시험법 개발 (Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory)

  • 김대철;이근호;김형의
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동 (Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates)

  • 김진봉;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

엑스트라도조교 사재 정착구 시스템에 대한 실험적 연구 (Experimental Study of Extradosed Bridge Anchor System)

  • 김기동;박원태
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.146-154
    • /
    • 2010
  • In this study the experimental results of fatigue specimen for the Strand Stay Cable Assembly of Extadosed bridges is investigated. The fatigue test and tensile experiment is conducted to 6 kinds of specimens. Test specimen OVM250-31 Strand Cable System manufactured by china OVM B-Machinery Co., Ltd, and OVM250-42 Parallel Strand Stay Cable Assembly manufactured by china OVM B-Machinery Co., Ltd, are passed for fatigue test and rupture tensile test. But Test specimen OVM250-42 Parallel Strand Stay Cable Assembly manufactured by korean A-Machinery Co., Ltd, is not passed for fatigue test conducted according to the "Recommendation for Stay Cable Design. The test result are compared to the fatigue criteria of PHI 2001 for cyclic load, and it is concluded that the current korean design code will be needed for representing the fatigue load in Hot Dip Galvanized Strand Stay Cable. It is verified that the new korean specification and quality criteria of Strand Stay Cable and exact experimental applied process will be needed.