• Title/Summary/Keyword: fatigue impacts

Search Result 46, Processing Time 0.023 seconds

System reliability assessment of hanger structure considering corrosion-fatigue coupling effect

  • Yang Ding;Chao-Dong Guan;Jian Zhou;Tian-Yun Chu;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • The bridge hanger is exposed to cyclic loads, such as wind and vehicle loads, which can induce fatigue failure, significantly reducing its operational lifespan. Additionally, the hanger is prone to corrosion throughout transportation, construction, and operation. Although corrosion fatigue curves are typically derived from individual steel wire experiments, the bridge hanger comprises multiple parallel steel wires. Consequently, a corrosion fatigue curve based on a single wire may not accurately portray the hanger's longevity, and data solely at the component level may not encompass the overall system-level condition. To tackle this challenge, this paper introduces a series system-level reliability assessment framework based on dynamic Bayesian Networks, accounting for the interdependence between variables. Specifically, the framework encompasses a time-varying reliability model featuring three random parameters (corroded number, equivalent structural stress, and the total cycles number of wires) and leverages seven numerical simulation studies to investigate the impacts of these random parameters on system reliability.

A Study on the Carburizing Treatment of SCM415 Steel Spur Gear (SCM415 스퍼기어의 침탄처리에 관한 연구)

  • Ahn, Min-Ju;Ahn, In-Hyo;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • The main objective of this paper is obtaining the optimal carburizing hours which impacts geometric tolerances, OPD(Over Pin Diameter), runout, hardness and fatigure strength of SCM415 spur gear. In order to observe the deformation of the gear, the circularity, squareness, OPD(Over Pin Diameter) and runout were measured at 3hour, 4hour and 5hour respectively. As the result, the 3hour situation is the best, which very similar with the 4hour one. Afterwards, with the purpose of getting the result of gear hardness, the surface hardness, maximum hardness and interior hardness were measured. The result is 5h situation is the best, and it's similar with 4hour one. At last, the fatigue tests have been done which receive the result that the 4h situation showed 9~12% fatigue strength improvement compared with the 3h and 5h ones. To sum up the results, the 4hour situation shows the best performance in accuracy, hardness and fatigue strength.

Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.191-218
    • /
    • 2019
  • The tower-platform interface and mooring system of floating offshore wind turbines (FOWTs) are some of the most critical components with significant influences on overall project costs. In addition to satisfying strength requirements, it is typical and vital to meet fatigue criteria for a service life of 25 years or more. Wind spectra characteristics considered in analysis can penalize fatigue designs, leading to unnecessary costs. The International Electrotechnical Commission (IEC, 2009) recommends the use of site-specific wind data (spectrum, turbulence intensity, etc.) in design of FOWTs, but for offshore sites it is often the case that such data is unavailable and land-based data are used as surrogates in design. For such scenarios, it is worth investigating whether such alternative approach is suitable and accurate, and understanding the consequence of the selection of wind spectral characteristics on fatigue design. This paper addresses the impact of the subsequent selection on fatigue responses of towerbase and mooring system in a FOWT, as a sequel to the paper by Udoh and Zou (2018) which focused on impacts on strength design. The 5 MW semi-submersible FOWT platform with six mooring lines implemented in the preceding study is applied in analysis. Results indicate significant variations in resulting fatigue life with considered wind parameters. Thus, it is critical to apply proper wind spectra characteristics for analysis and design of FOWTs to avoid unnecessary conservatism and costs. Based on the findings of this study, more explicit guidance on the application of turbulence intensities for IEC-recommended models in offshore sites could lead to more accurate load estimates in design of FOWTs.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Effect of temperature on service life of flexible pavement using finite element analysis

  • Amin Hamdi
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.513-521
    • /
    • 2023
  • Temperature is one of the most critical elements that influence the rutting and fatigue resistance of flexible pavements. Particularly in extreme hot regions in Saudi Arabia, high temperature would significantly reduce the rutting resistance of flexible pavements leading to reduction of pavement service life. Due to the impacts of global warming, average temperature in Saudi Arabia is expected to further increase by about 4℃ by the end of the 21st century. The substantial increase in average temperature will elevate the expected pavement maintenance and rehabilitation cost. This paper analyzes the structural effects of temperature on pavement using layered elastic analysis based on finite element techniques. The research team calculated the potential loss of pavement service life due to the projected temperature increase and climate change. The paper also analyzed potential impact of using carbon waste in asphalt concrete to tackle the derogatory impacts of temperature rise.

The Impacts of Nurses' Working Environment on Health Problems (간호사의 근로환경이 건강문제에 미치는 영향)

  • Jang, Hyunjoo;Choi, Eunsuk
    • Korean Journal of Occupational Health Nursing
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Purpose: The purpose of this study is to investigate the effect of work environment on health problems of nurses. Methods: The subjects of the study were 395 nurses who were wage workers among KWCS (Korean Working Conditions Survey) respondents in 2014. The work environments were measured by the KWCS questionnaire. Results: 48.5% of the 395 nurses had health problems. The prevalence of musculoskeletal diseases (34.7%) was the highest among all health problems. The ergonomic work environment was significantly related to musculoskeletal disorders, headache and eye strain, and fatigue. In addition, the increase in work-individual interface area was significantly related to fatigue. Conclusion: The work environment of nurses affects health problems. It is therefore important to develop strategies that improve the health problems of nurses by reducing ergonomic and psycho-social risk factors.

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

Impacts on the Deteriorative Breakdown Characteristics by the Void of Polyethyleme (Polyethylene의 공극이 절연파괴특성에 미치는 영향)

  • 정영순
    • 전기의세계
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 1977
  • This study is to investigate the v-t characteristics gained by means of the Weibull distribution and to analyze the characteritics of fatigue breakdown caused by the A-C voltage of cross-linked polyethylene with and without void. By the results, it has in most cases reveald deteriorative breakdown in case of none-void, and that random breakdown or complex Weibull distribution of deteriorative breakdown and random breakdown in case of with void.

  • PDF

Supporting Resilience and the Management of Grief and Loss among Nurses: Qualitative Themes from a Continuing Education Program

  • Esplen, Mary Jane;Wong, Jiahui;Vachon, Mary L.S.
    • Journal of Hospice and Palliative Care
    • /
    • v.25 no.2
    • /
    • pp.55-65
    • /
    • 2022
  • Caring for patients with cancer is highly stimulating and rewarding, attracting health professionals to the field who enjoy the challenge of managing a complex illness. Health professionals often form close bonds with their patients as they confront ongoing disease or treatment impacts, which may be associated with multiple losses involving function and/or eventual loss of life. Ongoing exposure to patient loss, along with a challenging work setting, may pose significant stress and impact health professionals' well-being. The prevalence rates of burnout and compassion fatigue (CF) are significant, yet health professionals have little knowledge on these topics. A 6-week continuing education program consisting of weekly small-group video-conferencing sessions, case-based learning, and an online community of practice was delivered to health care providers providing oncology care. Program content included personal, organization and team-related risk and protective factors associated with CF, grief models, and strategies to mitigate against CF. Content analysis was completed as part of the program evaluation. In total, 189 participants (93% nurses) completed the program, which was associated with significant improvements in confidence and knowledge of CF and strategies to support self and team resilience. Qualitative themes and vignettes from experiences with the program are presented. Key themes included knowledge gaps, a lack of support related to CF and strategies to support resilience, organization-and team-based factors that can inhibit expression about the impacts of clinical work, the health professional as a "person" in caregiving, and the role of personal variables, self-skill practices, and recommendations for education and support for self and teams.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.