• 제목/요약/키워드: fatigue elements

검색결과 208건 처리시간 0.025초

피로하중을 받는 테이블 라이너의 파손응력예측에 관한 연구 (A Study on the Prediction of Failure Stress for Table Liner under Fatigue Load)

  • 이동우;주원식
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.97-105
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers and the centrifugal force by rotation of table. It demands $4{\times}10^7$ expense of life but has $4{\times}10^6~-8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller The repair expense fur it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner of vertical roller mill using HDM and fatigue analysis

New formulation for vibration analysis of Timoshenko beam with double-sided cracks

  • Ayatollahi, M.R.;Hashemi, R.;Rokhi, H.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.475-490
    • /
    • 2010
  • It is the intention of this study to synthesize the effects of double-edge cracks on the dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam containing two same-line edge cracks. The presented model is then developed for elements with two parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks. Finally, a finite element code is implemented, to examine the influence of depth and location of double cracks, on the natural frequencies of the damaged system.

스퍼기어의 피팅 수명 예측 및 실험 (Experiments and Prediction of Pitting Life in Spur Gears)

  • 김종성;주진욱;이상돈;조용주
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.399-403
    • /
    • 2009
  • The objective of this paper is to predict pitting initiation by using a contact analysis and subsurface stress. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions. Subsurface stress field is obtained using rectangular patch solutions. It is used Mesoscopic multiaxial fatigue criterion to predict contact fatigue life. It is important to predict pitting initiation to enhance reliability of the mechanical elements. Pitting life prediction in the spur gears which are fundamental mechanical element is presented in this paper.

선박용 프로펠러재의 피로강도평가 및 개선에 관한 연구 (A Study on the Fatigue Strength Evaluation and Improvement of Marine Propeller Materials)

  • 윤한용;정의정;임명환
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.477-483
    • /
    • 2005
  • A propeller has been considered as one of the most critical elements in propelling ships. However, only a little research on the marine propeller has been carried out. Furthermore, fractures of the propeller have been frequently caused by fatigue, but only tensile strength, yield strength and elongation are discussed in Register of Shipping. For the above reasons, we have evaluated strength properties of A1BC3 and HBsC1, both which have been used for the marine propeller by using air jet chisel and then, presented a method of improving the strength.

2차원 8절점 등매개요소를 사용한 피로크랙개구거동의 유한요소해석 (The Finite Element Analysis of Fatigue Crack Opening Behavior Using Two Dimensional Eight Node Isoparametric Element)

  • 송삼홍;김현
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.271-277
    • /
    • 1994
  • The fatigue crack opening behavior is analyzed using finite element method. Because extremely fine mesh subdivision is required when using constant stress constant strain triangular element, this study uses conventional two dimensional eight node isoparametric elements. Since plasitc zone size is similar to crack propagating length per each load cycle because of relatively large element size, a new analysis model that a crack propagates every two load cycle is suggested. the opening load and crack opening displacement can be obtained accurately by this method.

Three-dimensional finite element modeling of a long-span cable-stayed bridge for local stress analysis

  • Lertsima, Chartree;Chaisomphob, Taweep;Yamaguchi, Eiki
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.113-124
    • /
    • 2004
  • The information on local stress acting in a bridge is required in many occasions such as fatigue assessment. The analysis by beam elements cannot yield this class of information adequately, while the finite element modeling of an entire long-span bridge by shell elements is impractical. In the present study, the hybrid modeling is tried out: only part of a bridge in which the point of interest is located is discretized by shell elements and the remaining part is modeled by beam elements. By solving a simple box girder problem, the effectiveness of this approach is discussed. This technique is then applied to the Rama IX Bridge for local stress evaluation. The numerical results compare very well with the results of a full-scale static loading test. The present research thus offers a practical yet accurate technique for the stress analysis of a long-span cable-stayed bridge.

고속도로 졸음쉼터 설계요소 정립 연구 (A Study on Design Elements of Freeway Rest Areas for Drowsy Drivers)

  • 한다정;김응철;양재호
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.1-8
    • /
    • 2018
  • PURPOSES : In this study, design elements of rest areas for drowsy drivers are classified and appropriate criteria for each design element are presented. METHODS : By comparing and analyzing the design criteria for rest areas, the most appropriate installation criteria were suggested by considering the driving patterns of rest area users. RESULTS : As a result of the study, elements influencing the design of rest areas for drowsy drivers are suggested such as installation location and installation type. In addition, proper separation distance between resting areas was suggested considering vehicle flow, users' fatigue and physiological needs. Other criteria for rest areas were also suggested. CONCLUSIONS : Proper safety facilities were not installed in rest areas because appropriate criteria were not established. In this study, design elements were derived and installation criteria were designed so that rest areas could be used safely and conveniently.

규칙파중을 항행하는 선박의 유탄성응답해석 (A Hydroelastic Response Analysis of Ships with Forward Speed in Regular Waves)

  • 이승철;배성용
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.48-55
    • /
    • 2010
  • When a large ship is advancing in waves, ship undergoes the hydroelastic response, which has influences on structural stability and the fatigue destruction etc. of the ship. Therefore, to predict accurate hydroelastic response, it is necessary to analyze hydroelastic response including fluid-structure interaction. In this research, a ship is divided into many hull elements to calculate the fluid forces and wave exciting forces on each elements using three-dimensional source distribution method. The calculated fluid forces and wave exciting forces are assigned to nodes of hull elements. The neighbor nodes are connected with elastic beam elements. We analyzed hydroelastic responses, and those are formulated by using finite element method. Particularly, to estimate the influence of forward speed on the hydroelastic responses, we use two different methods : Full Hull Rotation Method(FHRM) and Sectional Hull Rotation Method(SHRM).

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

혼합모드(Mode I+II)구현을 위한 2축 피로시험 JIG 설계 (Design of 2 Axles Fatigue Test JIG for the Materialization of Mixed Mode (Mode I+II))

  • 최성대;정선환;김기만;김잠규;최명수;김우재
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.59-64
    • /
    • 2008
  • Elements of a mechanical structure are getting from multi-axles stress. so fatigue characteristic experiment Shall execute in multi-axles stress state. it is very hard to apply according to forms of a testing machine and implementation. In this study, 2 axles fatigue testing machine did a design and Development. a new JIG developed to realize a mixed mode. a stress state in mixed mode of a specimen had each other comparison using the Finite element method to examine propriety of a new JIG.

  • PDF