• Title/Summary/Keyword: far-field effect

Search Result 288, Processing Time 0.03 seconds

Effects of AC Electric Field on the Stability of Laminar Lifted Flame in Coflow Jet (동축류 버너에서 층류 부상화염 안정화의 교류 전기장 효과에 관한 실험적 연구)

  • Park, C.S.;Won, S.H.;Chung, S.H.;Lee, S.M.;Cha, M.S.;Song, Y.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.70-75
    • /
    • 2004
  • The effect of electric fields on the stability of non-premixed laminar lifted flame in coflow jets has been investigated by applying high voltage alternative current (AC) to the nozzle of propane fuel. The stable lifted flame which exist in far field of jets, the liftoff height was not effected by applied voltage. This implies that the cold jet between the nozzle and flame base can be analyzed with the previous cold jet theory. Flame liftoff and reattachment velocities were also measured as function of applied voltage and frequency. The fuel jet velocity at flame liftoff and reattachment increased with increasing voltage, implying that the range of flame srability can be extended with the AC charging. However the liftoff velocity increased with frequency of AC charging on nozzle, whereas the reattachment velocity decreases with frequency. The liftoff and reattachment velocities were correlated linearly with voltage considering the effects of frequency.

  • PDF

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

An Experimental Study on the Aerodynamic Effects Generated by a Train Passing Rear by Platform (철도차량의 승강장 통과시 발생하는 공기역학적 영향에 대한 실험적 연구)

  • Kim, Dong-Hyeon;Kwon, Hyeok-Bin;Kim, Do-Hoon;Kim, Moon-Hun;Song, Moon-Shuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.734-739
    • /
    • 2004
  • The aerodynamic effect on platform during the train passage, the results of field test on the high-speed railway platform are discussed and the whole test results and conclusions are synthesized. The field test for the high-speed railway have been conducted on the Osong temporary platform in the newly constructed Seoul-Busan high-speed line and total 12 measurements have been conducted for G7 train and KTX train. The results shows that the high-speed trains have similar aerodynamic characteristics and have far better characteristics referring to the conventional trains such as Saemaul and Mugungwha trains. To discuss the actual aerodynamic effects on the platform at its own operational speed, Beaufort wind scale have been introduced and the criteria for the safety on railway platform has also been discussed.

Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake (비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구)

  • Park, Yong-Hwan;Kim, Min-Woo;Lee, Kyu-Ho;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

Flow Measurements of Circular Jets Arrayed Circumferentially (원주상으로 배열된 원형 제트의 유동 측정)

  • Jin, Hak-Su;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.11-14
    • /
    • 2006
  • This study investigates the flow field of multiple-jet measured by hot-wire anemometry. The experiments were classified into two cases; 6- or 7-nozzle located circumferentially in equal interval without or with a central jet. The effect of the number of nozzles the flow field was examined when the Reynolds number based on the nozzle diameter is about $10^4$. Mean Velocity, normal and Reynolds stresses were measured in the downstream of jets. The Tollmien's theory holds far downstream at 48d apart from the nozzle exit especially when a nozzle locates at the center. The general flow characteristics is influenced due to the number of nozzles.

  • PDF

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

Study on the Blocking Voltage and Leakage Current Characteristic Degradation of the Thyristor due to the Surface Charge in Passivation Material (표면 전하에 의한 Thyristor 소자의 차단전압 및 누설전류특성 연구)

  • Kim Hyoung-Woo;Seo Kil-Soo;Bahng Wook;Kim Ki-Hyun;Kim Nam-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In high-voltage devices such as thyristor, beveling is mostly used junction termination method to reduce the surface electric field far below the bulk electric field and to expand the depletion region thus that breakdown occurs in the bulk of the device rather than at the surface. However, coating material used to protect the surface of the device contain so many charges which affect the electrical characteristics of the device. And device reliability is also affected by this charge. Therefore, it is needed to analyze the effect of surface charge on electrical characteristics of the device. In this paper, we analyzed the breakdown voltage and leakage current characteristics of the thyristor as a function of the amount of surface charge density. Two dimensional process simulator ATHENA and two-dimensional device simulator ATLAS is used to analyze the surface charge effects.

Effect of ECR-Ion Milling on Exchange Biasing in NiO/NiFe Bilayers

  • D.G. Hwang;Lee, S. S.;Lee, K. H.;Lee, K. B.;Park, D. H.;Lee, H. S.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.23-25
    • /
    • 2000
  • We have investigated the effects of Ar and$O_2$-ion milling on the exchange coupling field ($H_{ex}$) and coercive field ($H_c$) at the interfaces between substrates and NiO/NiFe films, to understand the exchange biasing mechanism. The $O_2$-ion milling was successfully performed by means of the electron cyclotron resonance (ECR) process. We found that the local roughness gradient of the NiO surface increased by $O_2$-ion milling. The ratio of $H_{ex}/H_c$ increased from 0.87 to 1.77, whereas $H_c$ decreased by almost a half as a results of the ion milling. The decrease in $H_c$could be interpreted as due to the refinement of magnetic domain size, which arose from the increase of the local roughness gradient of the NiO surface. The decrease in low $H_c$, and increase in $H_{ex}$ in NiO spin valves by ECR-ion milling are in the right direction far use in magnetoresistance (MR) heads.

  • PDF

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow By Diminishing the Random Noise Effect of Traffic Detector Variables (검측 변수내 Random Noise 제거를 통한 연속류 돌발상황 자동감지알고리즘 개발)

  • Choi, Jong-Tae;Shin, Chi-Hyun;Kang, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.