• Title/Summary/Keyword: far field

Search Result 1,917, Processing Time 0.03 seconds

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

Seismic Response Analysis Method for 2-D Linear Soil-Structure Systemsusing Finite and Infinite Elements (유한요소와 무한요소를 사용한 2차원 선형 지반-구조물계의 지진응답해석법)

  • 김재민;윤정방;김두기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.231-244
    • /
    • 2000
  • This paper presents a dynamic analysis technique for a 2-D soil-structure interaction problem in the frequency domain, which can directly be applied as an analysis tool for seismic response analyses of underground structures, tunnels, embankments, and so on. In this method, the structure and near-field soil is modeled by the standard finite elements, while the unbounded far-field soil is represented using the dynamic infinite elements in the frequency domain. The earthquake-input motion is regarded as traveling P and SV waves which are incident vertically from the far-field of underlying half-space to the near-field of layered medium. The equivalent earthquake forces are then calculated utilizing so-called fixed-exterior-boundary-method and the free-field responses including displacements and tractions. For the verification of the present study, seismic response analyses are carried out for a multi-layered half-space free-field soil medium and a cylindrical cavity embedded in a homogeneous half-space. Comparisons of the present results with solutions by other approaches indicate that the proposed methodology gives accurate estimates. Finally, an application example of seismic response analysis for a subway station is presented, which demonstrates the applicability of the present study.

  • PDF

Study on Electrical Characteristics According Process Parameters of Field Plate for Optimizing SiC Shottky Barrier Diode

  • Hong, Young Sung;Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.199-202
    • /
    • 2017
  • Silicon carbide (SiC) is being spotlighted as a next-generation power semiconductor material owing to the characteristic limitations of the existing silicon materials. SiC has a wider band gap, higher breakdown voltage, higher thermal conductivity, and higher saturation electron mobility than those of Si. When using this material to implement Schottky barrier diode (SBD) devices, SBD-state operation loss and switching loss can be greatly reduced as compared to that of traditional Si. However, actual SiC SBDs exhibit a lower dielectric breakdown voltage than the theoretical breakdown voltage that causes the electric field concentration, a phenomenon that occurs on the edge of the contact surface as in conventional power semiconductor devices. Therefore in order to obtain a high breakdown voltage, it is necessary to distribute the electric field concentration using the edge termination structure. In this paper, we designed an edge termination structure using a field plate structure through oxide etch angle control, and optimized the structure to obtain a high breakdown voltage. We designed the edge termination structure for a 650 V breakdown voltage using Sentaurus Workbench provided by IDEC. We conducted field plate experiments. under the following conditions: $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$. The experimental results indicated that the oxide etch angle was $45^{\circ}$ when the breakdown voltage characteristics of the SiC SBD were optimized and a breakdown voltage of 681 V was obtained.

The Study of Characteristic of Electromagnetic wave and Heat of Far Infrared Ray Radiant Oven (원적외선 복사오븐의 전자파 및 열적 특성연구)

  • Kim, Yong-Ha;Back, Bum-Min;Woo, Sung-Min;Jung, Hyun-Sung;You, Jung-Hee;Park, Hwa-Young;Park, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2053_2054
    • /
    • 2009
  • This paper studied about the characteristics of the Far Infrared Ray Radiant Oven. We decrease intensity of electromagnetic wave which depended on electric and magnetic field occured by the Far Infrared Ray Radiant Oven and then the affected effect on the human body is minimized.

  • PDF

Optimal Design of GaN Power MOSFET Using Al2O3 Gate Oxide (Al2O3 게이트 절연막을 이용한 GaN Power MOSFET의 설계에 관한 연구)

  • Nam, Tae-Jin;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.713-717
    • /
    • 2011
  • This paper was carried out design of 600 V GaN power MOSFET Modeling. We decided trench gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 600 V breankdown voltage and $0.4\;m{\Omega}cm^2ultra$ low on resistance. At the same time, we carried out field ring simulation for obtaining high voltage.

Study on Design and Electric Characteristics of MOS Controlled Thyristor for High Breakdown Voltage (고내압용 MOS 구동 사이리스터 소자의 설계 및 전기적 특성에 관한 연구)

  • Hong, Young-Sung;Chung, Hun-Suk;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.794-798
    • /
    • 2011
  • This paper was carried out design of 1,700 V Base Resistance Thyristor for fabrication. We decided conventional BRT (base resistance thyristor) device and Trench Gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 2,000 V breakdown voltage and 3.0 V Vce,sat. At the same time, we carried out field ring simulation for obtaining high voltage.

Study on Electric Characteristics of IGBT Having P Region Under Trench Gate (Trench Gate 하단 P-영역을 갖는 IGBT의 전기적 특성에 관한 연구)

  • Ann, Byoung Sub;Yuek, Jinkeoung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.361-365
    • /
    • 2019
  • Although there is no strict definition of a power semiconductor device, a general description is a semiconductor that has capability to control more than 1 W of electricity. Integrated gate bipolar transistors (IGBTs), which are power semiconductors, are widely used in voltage ranges above 300 V and are especially popular in high-efficiency, high-speed power systems. In this paper, the size of the gate was adjusted to test the variation in the yield voltage characteristics by measuring the electric field concentration under the trench gate. After the experiment Synopsys' TCAD was used to analyze the efficiency of threshold voltage, on-state voltage drop, and breakdown voltage by measuring the P- region and its size under the gate.

Adiabatic Optical-fiber Tapers for Efficient Light Coupling between Silicon Waveguides and Optical Fibers (실리콘 도파로와 광섬유 사이의 효율적인 광 결합을 위한 아디아바틱 광섬유 테이퍼)

  • Son, Gyeongho;Choi, Jiwon;Jeong, Youngjae;Yu, Kyoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.213-217
    • /
    • 2020
  • In this study we report a wet-etching-based fabrication method for adiabatic optical-fiber tapers (OFTs), and describe their adiabaticity and HE11 mode evolution at a wavelength of 1550 nm. The profile of the fabricated system satisfies the adiabaticity properties well, and the far-field pattern from the etched OFT shows that the fundamental HE11 mode is maintained without a higher-order mode coupling throughout the tapers. In addition, the measured far-field pattern agrees well with the simulated result. The proposed adiabatic OFTs can be applied to a number of photonic applications, especially fiber-chip packages. Based on the fabricated adiabatic OFT structures, the optical transmission to the inversely tapered silicon waveguide shows large spatial-dimensional tolerances for 1 dB excess loss of ~60 ㎛ (silicon waveguide angle of 1°) and insertion loss of less than 0.4 dB (silicon waveguide angle of 4°), from the numerical simulation. The proposed adiabatic coupler shows the ultrabroadband coupling efficiency over the O- and C-bands.

Emulator Circuit for a Flux Locked Loop for Detection of Magnetocardiography Signal (심자도 신호 검출을 위한 Flux Locked Loop (FLL) Emulation 회로)

  • 안창범;이동훈;김인기;장경섭;김기태;정동현;최중필
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2749-2752
    • /
    • 2003
  • Magnetocardiography is a very weak biomagnetic field generated from the heart. Since the magnitude of the biomagnetic field is in the order of a few pico Tesla, it is measured with a superconducting quantum interference device (SQUID). SQUID is a transducer converting magnetic flux to voltage, however, its range of linear conversion is very restricted. In order to overcome the narrow dynamic range. a flux locked loop is used to feedback the output field with opposite polarity to the input field so that the total Held becomes zero. This prevents the operating point of the SQUID from moving too far away from the null point thereby escape from the linear region. In this paper, an emulator for the SQUID sensor and feedback coil is proposed. Magnetic courting between the original field and the generated field by the feedback coil is emulated by electronic circuits. By using the emulator, FLL circuits are analyzed and optimized without SQUID sensors. The emulator may be used as a test signal for multi-channel gain calibration and system maintenance.

  • PDF

Assessment of Fuzzy Measure Possibility for the Electromagnetic Field according to Voltage fluctuation of the Jechon Area (제천지역 전압변동에 따른 전자계에 대한 퍼지척도 가능성 평가)

  • Kim, Sang-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.50-55
    • /
    • 2005
  • This Paper Presents assessment of fuzzy measure Possibility far the electromagnetic field according to voltage fluctuation of the Jechon Area. To cope with substantial electromagnetic analysis, the safety assessment were analyzed the double 154kV T/L, 345kV T/L, Jechon-Ichon Jechon-Youngju, respectively. As the results of case study, in case of 345kV T/L, the electric field value was 11.4927kV/m, magnetic field value was 0.4622G at the Point about 7m away from the line in severest case. Tn assessment of fuzzy measure Possibility for the electromagnetic field, this paper use probability of fuzzy and measure of fuzziness technique.