In this paper, we present the concept of generalization in constructing windows for subsequence matching and propose a new subsequence matching method. GeneralMatch, based on the generalization. The earlier work of Faloutsos et al.(FRM in short) causes a lot of false alarms due to lack of the point-filtering effect. DualMatch, which has been proposed by the authors, improves performance significantly over FRM by exploiting the point filtering effect, but it has the problem of having a smaller maximum window size (half that FRM) given the minimum query length. GeneralMatch, an improvement of DualMatch, offers advantages of both methods: it can use large windows like FRM and, at the same time, can exploit the point-filtering effect like DualMatch. GeneralMatch divides data sequences into J-sliding windows (generalized sliding windows) and the query sequence into J-disjoint windows (generalized disjoint windows). We formally prove that our GeneralMatch is correct, i.e., it incurs no false dismissal. We also prove that, given the minimum query length, there is a maximum bound of the window size to guarantee correctness of GeneralMatch. We then propose a method of determining the value of J that minimizes the number of page accesses, Experimental results for real stock data show that, for low selectivities ($10^{-6}~10^{-4}$), GeneralMatch improves performance by 114% over DualMatch and by 998% iver FRM on the average; for high selectivities ($10^{-6}~10^{-4}$), by 46% over DualMatch and by 65% over FRM on the average.
The Transactions of the Korea Information Processing Society
/
v.4
no.10
/
pp.2461-2469
/
1997
Target detection and recognition problems, in which neural networks are widely used, require translation invariant and real-time processing in addition to the requirements that general pattern recognition problems need. This paper presents a novel architecture that meets the requirements and explains effective methodology to train the network. The proposed neural network is an architectural extension of the shared-weight neural network that is composed of the feature extraction stage followed by the pattern recognition stage. Its feature extraction stage performs correlational operation on the input with a weight kernel, and the entire neural network can be considered a nonlinear correlation filter. Therefore, the output of the proposed neural network is correlational plane with peak values at the location of the target. The architecture of this neural network is suitable for implementing with parallel or distributed computers, and this fact allows the application to the problems which require realtime processing. Net training methodology to overcome the problem caused by unbalance of the number of targets and non-targets is also introduced. To verify the performance, the proposed network is applied to detection and recognition problem of a specific automobile driving around in a parking lot. The results show no false alarms and fast processing enough to track a target that moves as fast as about 190 km per hour.
Journal of the Korea institute for structural maintenance and inspection
/
v.13
no.2
s.54
/
pp.231-242
/
2009
The baseline distribution of a structure represents the statistical distribution of dynamic response feature from the healthy state of the structure. Generally, damage-sensitive dynamic response feature of a structure manifest themselves near the tail of a baseline statistical distribution. In this regard, some researchers have paid attention to extreme value distribution for modeling the tail of a baseline distribution. However, few researches have been conducted to theoretically understand the extreme value distribution from a perspective of statistical damage assessment. This study investigates the asymptotic convergence of domain of attraction in extreme value distribution through parameter estimation, which is needed for reliable statistical damage assessment. In particular, the asymptotic convergence of a domain of attraction is quantified with respect to the sample size out of which each extreme value is extracted. The effect of the sample size on false positive alarms in statistical damage assessment is quantitatively investigated as well. The validity of the proposed method is demonstrated through numerically simulated acceleration data on a two span continuous truss bridge.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.4
/
pp.9-18
/
2015
In recent years, the number of applications embedded in the various devices such as a smart phone is getting larger. Due to the frequent changes of states in the execution environment, various malfunctions may occur. In order to handle the issue, this paper suggests an approach to detecting method-level failures in the legacy software systems. We can determine if the software executes the abnormal behavior based on the behavior model. However, when we apply the context-sensitive behavior model to the method-level, several problems happen such as false alarms and monitoring overhead. To tackle those issues, we propose CIBFD (Context-Insensitive Behavior Model-based Failure Detection) method. Through the case studies, we compare CIBFD method with the existing method. In addition, we analyze the effectiveness of the method for each application domains.
In this paper, we propose a new vision-based fire detection method for a real-life application. Most previous vision-based methods using color information and temporal variation of pixel produce frequent false alarms because they used a lot of heuristic features. Furthermore there is also computation delay for accurate fire detection. To overcome these problems, we first detected candidated fire regions by using background modeling and color model of fire. Then we made probabilistic models of fire by using a fact that fire pixel values of consecutive frames are changed constantly and applied them to a Bayesian Network. In this paper we used two level Bayesian network, which contains the intermediate nodes and uses four skewnesses for evidence at each node. Skewness of R normalized with intensity and skewnesses of three high frequency components obtained through wavelet transform. The proposed system has been successfully applied to many fire detection tasks in real world environment and distinguishes fire from moving objects having fire color.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.43
no.1
s.307
/
pp.31-38
/
2006
In this paper, we consider one-step-ahead control of waveform parameters (pulse amplitudes and lengths, and FM sweep rate) as well as detection thresholds for optimal range and range-rate tracking in clutter. The optimal control of the combined parameter set minimizes a tracking performance index under a set of parameter constraints. The performance index includes the probability of track loss and a function of estimation error covariances. The track loss probability and the error covariance are predicted using a hybrid conditional average algorithm The effect of the false alarms and clutter interference is taken into account in the prediction. Tracking performance of the one-step-ahead control is presented for several examples and compared with a control strategy heuristically derived from a finite horizon optimization.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.47
no.5
/
pp.62-68
/
2010
This study is to identify target locations with low false alarms on thermal infrared images obtained from natural environment. The proposed method is different from the previous researches because it uses morphology filters for Gabor response images instead of an intensity image in initial detection stage. This method does not need precise extracting a target silhouette to distinguish true targets or clutters. It comprises three distinct stages. First, morphological operations and adaptive thresholding are applied to the summation image of four Gabor responses of an input image to find out salient regions. The locations of extracted regions can be classified into targets or clutters. Second, local texture features are computed from salient regions of an input image. Finally, the local texture features are compared with the training data to distinguish between true targets and clutters. The multi-layer perceptron having three layers is used as a classifier. The performance of the proposed method is proved by using natural infrared images. Therefore it can be applied to real automatic target detection systems.
Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types.
This paper proposes a novel method for grading of underground communication conduits by laser projection image analysis. The equipment thrust into conduit consists of a laser diode, a light emitting diode and a camera, the laser diode is utilized for generating projection image onto pipe wall, the light emitting diode for lighting environment and the image of conduit is acquired by the camera. In order to segment profile region, we used a novel color difference model and multiple thresholds method. The shape of profile ring is represented as a minimum diameter and the Fourier descriptor, and then the pipe status is graded by the rule-based method. Both local and global features of the segmented ring shaped, the minimum diameter and the Fourier descriptor, are utilized, therefore injured and distorted pipes can be correctly graded. From the experimental results, the classification is measured with accuracy such that false alarms are less than 2% under the various conditions.
Park, Jang-Sik;Kim, Hyun-Tae;Choi, Soo-Young;Kang, Chang-Soon
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.427-430
/
2007
Many victims and property damages are caused in fires every year. In this paper, flame and smoke detection algorithm by using image processing technique is proposed to early alarm fires. The first decision of proposed algorithms is to check candidate of flame region with its unique color distribution distinguished from artificial lights. If it is not a flame region then we can check to candidate of smoke region by measuring difference of brightness and chroma at present frame. If we just check flame and smoke with only simple brightness and hue, we will occasionally get false alarms. Therefore we also use motion information about candidate of flame and smoke regions. Finally, to determine the flame after motion detection, activity information is used. And in order to determine the smoke, edges detection method is adopted. As a result of simulation with real CCTV video signal, it is shown that the proposed algorithm is useful for early fire recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.