• Title/Summary/Keyword: false alarms

Search Result 199, Processing Time 0.029 seconds

Design of an Efficient VLSI Architecture for Collision Detection Based on Insect's Visual Interneuron (곤충의 시각 신경망 기반 충돌감지 기술의 효율적인 VLSI 구조 설계)

  • Jeong, Sooyong;Lee, Jaehyeon;Song, Deokyong;Park, Taegeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1671-1677
    • /
    • 2018
  • In this research, the collision detection system based on insect's visual interneuron has been designed. The lobula giant movement detector (LGMD) corresponds to the movement value that increases in direct collision process. If the collision is detected by the LGMD only, it could generate a crash warning even in a non-collision situation, resulting in a lot of false alarms. Directionally sensitive movement detectors (DSMD) are directionally sensitive algorithm based on the elementary movement detectors (EMD) in four directions (up, down, left, and right). In this paper, we propose an efficient VLSI architecture for a realtime collision detection system that is robust to the surrounding environment while improving accuracy. The proposed architecture is synthesized with Dongbu Hightech 110nm standard cell library and shows 333MHz of maximum operating frequency and requires 8400 gates with about 16.5KB of internal memories.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

Reliability Improvement of the Electronic Security Fence Using Friction Electricity Sensor by Analyzing Frequency Characteristic of Environmental Noise Signal (환경잡음신호의 주파수특성 분석에 의한 전자보안펜스의 신뢰성 향상)

  • Yun, Seok Jin;Won, Seo Yeon;Kim, Hie Sik;Lee, Young Chul;Jang, Woo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • A passive type of fence security system was developed, which was based on electric charge detection technique. The implemented fence security system was installed at outskirts of greenhouse laboratory in the University of Seoul. The purpose of this research is to minimize false alarms by analyzing environmental noise. The existing system determines the intrusion alarm by analyzing the power of amplified signal, but the alarm was seriously affected by natural strong wind and heavy rainfall. The SAU(Signal Analysis Unit) sends input signals to remote server which displays intrusion alarm and stores all the information in database. The environmental noise such as temperature, humidity and wind speed was separately gathered to analyze a correlation with input signal. The input signal was analyzed for frequency characteristic using FFT(Fast Fourier Transform) and the algorithm that differentiate between intrusion alarm and environmental noise signal is improved. The proposed algorithm is applied for the site for one month as the same as the existing algorithm and the false alarm data was gathered and analyzed. The false alarm number was decreased by 98% after new algorithm was applied to the fence. The proposed algorithm improved the reliability at the field regarding environmental noise signal.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.

Implementation of A Safe Driving Assistance System and Doze Detection (졸음 인식과 안전운전 보조시스템 구현)

  • Song, Hyok;Choi, Jin-Mo;Lee, Chul-Dong;Choi, Byeong-Ho;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • In this paper, a safe driving assistance system is proposed by detecting the status of driver's doze based on face and eye detection. By the level of the fatigue, safe driving system alarms or set the seatbelt on vibration. To reduce the effect of backward light and too strong solar light which cause a decrease of face and eye detection rate and false fatigue detection, post processing techniques like image equalization are used. Haar transform and PCA are used for face detection. By using the statistic of the face and eye structural ratio of normal Koreans, we can reduce the eye candidate area in the face, which results in reduction of the computational load. We also propose a new eye status detection algorithm based on Hough transform and eye width-height ratio, which are used to detect eye's blinking status which decides doze level by measuring the blinking period. The system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. In this paper, four algorithms are implemented and proposed algorithm is made based on the probability model and we achieves 84.88% of correct detection rate through indoor and in-car environment experiments. And also we achieves 69.81% of detection rate which is better result than that of other algorithms using IR camera.

Baseline-Free Crack Detection in Steel Structures using Lamb Waves and PZT Polarity (램파와 압전소자 극성을 사용한 강구조의 실시간 균열손상 감지기법 개발)

  • Sohn, Hoon;Kim, Seung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.79-91
    • /
    • 2006
  • A new methodology of guided wave based nondestructive testing (NDT) is developed to detect crack damage in civil infrastructures such as steel bridges without using prior baseline data. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. To develop a more robust damage diagnosis technique, a new concept of NDT is conceived so that cracks can be detected without direct comparison with previously obtained baseline data. The proposed NDT technique utilizes the polarization characteristics of the piezoelectric wafers attached on the both sides of the thin metal structure. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves even at the presence of changing operational and environmental conditions. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to crack detection.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.