• 제목/요약/키워드: fall impact

검색결과 336건 처리시간 0.021초

낙상충격보호복 개발을 위한 선호도 조사에 관한 연구 - 50~70대 여성을 대상으로 - (Study on the Preference Survey for Developing the Fall Impact Protective Clothing - Targeting Women ages of 50s to 70s -)

  • 박정현;이정란
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.101-110
    • /
    • 2014
  • In this study, we investigate characteristics of fall, requirements toward the impact protective clothing, design preferences, etc. to develop the fall impact protective clothing for the silver-aged women. Among the 242 women respondents aging 50s to 70s, 43% experienced the fall in recent 2 years. It is found that the fall mostly occurred in winter season and happened during the regular activities such as walking outside, going up and down stairs. Most of the respondents have no experience buying the impact protective clothing, but they expressed the fall impact protective clothing would help reducing the injury from falls. Moreover, the intention to purchase the impact protective clothing is increasing with an increasing target age. However, the respondents concerned with increasing volume and weight of clothing by the protecting pad inserted into the clothing. The respondents also claimed that the impact protecting clothing should not interfere with their regular physical activities. The survey showed that respondents preferred to embed the impact protective function in pants as a form of the protective clothing. For the design preferences on the pants, casual style and straight silhouette was preferred and stretch fabric was selected. The respondents preferred underwear made of cotton spandex blend with relaxed fit.

IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류 (Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals)

  • 이현빈;이창준;이정근
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

The Effect on the Hip Muscle Activation of the Fall Direction and Knee Position During a Fall

  • Lee, Kwang Jun;Lim, Kitaek;Choi, Woochol Joseph
    • 한국전문물리치료학회지
    • /
    • 제28권1호
    • /
    • pp.84-91
    • /
    • 2021
  • Background: A hip fracture may occur spontaneously prior to the hip impact, due to the muscle pulling force exceeding the strength of the femur. Objects: We conducted falling experiments with humans to measure the activity of the hip muscles, and to examine how this was affected by the fall type. Methods: Eighteen individuals fell and landed sideways on a mat, by mimicking video-captured real-life older adults' falls. Falling trials were acquired with three fall directions: forward, backward, or sideways, and with three knee positions at the time of hip impact, where the landing side knee was free of constraint, or contacted the mat or the contralateral knee. During falls, the activities of the iliopsoas (Ilio), gluteus medius (Gmed), gluteus maximus (Gmax) and adductor longus (ADDL) muscles were recorded. Outcome variables included the time to onset, activity at the time of hip impact, and timing of the peak activity with respect to the time of hip impact. Results: For Ilio, Gmed, Gmax, and ADDL, respectively, EMG onset averaged 292, 304, 350, and 248 ms after fall initiation. Timing of the peak activity averaged 106, 96, 84, and 180 ms prior to the hip impact, and activity at the time of hip impact averaged 72.3, 45.2, 64.3, and 63.4% of the peak activity. Furthermore, the outcome variables were associated with fall direction and/or knee position in all but the iliopsoas muscle. Conclusion: Our results provide insights on the hip muscle activation during a fall, which may help to understand the potential injury mechanism of the spontaneous hip fracture.

동작 가변적 3D 프린팅 낙상보호패드가 통합된 팬츠의 평가 (Evaluation of Pants Embedded with Motion Adaptable 3D Printing Fall Impact Protective Pads)

  • 이진숙;박정현;이정란
    • 패션비즈니스
    • /
    • 제26권2호
    • /
    • pp.143-155
    • /
    • 2022
  • The purpose of this study was to develop protective clothing that could alleviate fall impacts. Fall impact protection pants for elderly women were designed, and motion adaptable hip pads and knee pads printed by 3D printing were integrated into the pants and evaluated. First, the design of the fall impact protection pants with variable motion was semi-loose fitting pants that could be worn and detached from the protective pad. A pad pocket was made in the lining inside the pants so that the protective pad could be fixed to the protective area. Second, in the evaluation of the appearance of the fall impact protection pants, the wearer group had a good score of 4.60 or higher for all questions on color, material, ease, and fit. In the evaluation of the insertion method of the protective pad, the flexibility of the pad, and the weight of the pad, the subjects' scores were 4.30~4.80. The fit of the fall impact protection pants was excellent in the texture and elasticity of the outside and inside of the pants. There was no discomfort due to the pad(4.60), and no difficulty in movement during wearing activities was reported. During squatting, it was evaluated as 4.80, indicating that the motion adaptable hip joint and knee pads were highly effective during operation.

추락위험 방지용 보호구로서 안전모 규정에 관한 고찰 (A Survey on Regulations of Safety Helmet for Preventing Fall Hazard)

  • 심상우;심용수;이종빈;장성록
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.96-101
    • /
    • 2022
  • The Occupational Safety and Health Act holds that industrial safety helmets can be used as protective equipment to prevent the risk of injury in fall accidents. To better understand the importance given to PPE for the head, we analyzed the relevant regulations and guidelines in developed countries and reviewed the guidelines on testing safety helmets. The PPE regulations in Korea were notably different from those in other countries. First, except in Korea and Japan, safety helmets were used for protection against falling objects, flying objects, impact, or electric shock. However, the regulations did not recognize safety helmets as a PPE against fall hazards. Second, the impact energy applied on the helmet was within the range 50-100 J, and the helmet could protect only the upper part of the head against hazards such as the impact of falling objects, flying objects, etc. Third, in Korean regulations, the term "fall" was used in relation to the parts where the safety helmet was specified as a fall hazard PPE, unlike in other countries. We propose that the term "fall" should be revised to "shock" in Korean regulations for the safety helmet.

수직속도 기반 충격전 낙상 감지에 관한 연구 (Study on Vertical Velocity-Based Pre-Impact Fall Detection)

  • 이정근
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.251-258
    • /
    • 2014
  • While the feasibility of vertical velocity as a threshold parameter for pre-impact fall detection has been verified, effects of sensor attachment locations and methods calculating vertical acceleration and velocity on the detection performance have not been studied yet. Regarding the vertical velocity-based pre-impact fall detection, this paper investigates detection accuracies of eight different cases depending on sensor locations (waist vs. sternum), vertical accelerations (accurate acceleration based on both accelerometer and gyroscope vs. approximated acceleration based on only accelerometer), and vertical velocities (velocity with attenuation vs. velocity difference). Test results show that the selection of waist-attached sensor, accurate acceleration, and velocity with attenuation based on accelerometer and gyroscope signals is the best in overall in terms of sensitivity and specificity of the detection as well as lead time.

추락사고 감소를 위한 안전모의 보호목적과 사용의도에 대한 고찰 (A Study on Protective Purposes and Intents of Use of Safety Helmets as for Reduction of Falls)

  • 김진현
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.83-89
    • /
    • 2013
  • Occupational Safety and Health Act provides that industrial safety helmets are personal protective equipment(PPE) to protect heads against falls from a height. Relevant domestic regulations are distinguished and different from other countries' cases. This study investigated industrial safety helmet's protective purposes and characteristics related to falls and the notion of fall prevention. A comparative analysis of regulations on safety helmets and fall prevention as well as standards on safety helmet's impact test requirements is followed by a literature review. It is also suggested that the term "fall" related to safety helmets should be changed to "impact on the upper part of head" in domestic regulations and standards.

임계값 기반 충격 전 낙상검출 및 실제 노인 데이터셋을 사용한 검증 (Threshold-based Pre-impact Fall Detection and its Validation Using the Real-world Elderly Dataset)

  • 김동권;이승희;구범모;양수민;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.384-391
    • /
    • 2023
  • Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).

서포트벡터머신을 이용한 충격전 낙상방향 판별 (Determination of Fall Direction Before Impact Using Support Vector Machine)

  • 이정근
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.47-53
    • /
    • 2015
  • Fall-related injuries in elderly people are a major health care problem. This paper introduces determination of fall direction before impact using support vector machine (SVM). Once a falling phase is detected, dynamic characteristic parameters measured by the accelerometer and gyroscope and then processed by a Kalman filter are used in the SVM to determine the fall directions, i.e., forward (F), backward (B), rightward (R), and leftward (L). This paper compares the determination sensitivities according to the selected parameters for the SVM (velocities, tilt angles, vs. accelerations) and sensor attachment locations (waist vs. chest) with regards to the binary classification (i.e., F vs. B and R vs. L) and the multi-class classification (i.e., F, B, R, vs. L). Based on the velocity of waist which was superior to other parameters, the SVM in the binary case achieved 100% sensitivities for both F vs. B and R vs. L, while the SVM in the multi-class case achieved the sensitivities of F 93.8%, B 91.3%, R 62.3%, and L 63.6%.