Acknowledgement
본 연구는 산업통상자원부와 한국산업기술진흥원의 "R&D재발견프로젝트"의 지원을 받아 수행된 연구결과이며(과제번호: P0026060) 또한 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2022RIS-005).
References
- World Health Organization. Step safely: strategies for preventing and managing falls across the life-course. 2021.
- Vieira ER, Palmer RC, Chaves PH. Prevention of falls in older people living in the community. Bmj, 2016;353.
- Dionyssiotis Y, Dontas IA, Economopoulos D, Lyritis GP. Rehabilitation after falls and fractures. J Musculoskelet Neuronal Interact. 2008;8(3):244-250.
- Schacht E, Richy F, Reginster J. The therapeutic effects of alfacalcidol on bone strength, muscle metabolism and prevention of falls and fractures. Journal of Musculoskeletal and Neuronal Interactions. 2005;5(3):273.
- Hanssens L, Reginster JY. Relevance of bone mineral density, bone quality and falls in reduction of vertebral and non-vertebral fractures. Journal of Musculoskeletal and Neuronal Interactions. 2003;3(3):189-193.
- Elliott S, Painter J, Hudson S. Living alone and fall risk factors in community-dwelling middle age and older adults. Journal of community health. 2009;34:301-310. https://doi.org/10.1007/s10900-009-9152-x
- Noury N, Herve T, Rialle V, Virone G, Mercier E, Morey G, Porcheron T. Monitoring behavior in home using a smart fall sensor and position sensors. In 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. 2000;607-610.
- Williams G, Doughty K, Cameron K, Bradley DA. A smart fall and activity monitor for telecare applications. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond. 1998;3:1151-1154.
- Parker MJ, Gillespie WJ, Gillespie LD. Effectiveness of hip protectors for preventing hip fractures in elderly people: systematic review. Bmj. 2006;332(7541):571-574. https://doi.org/10.1136/bmj.38753.375324.7C
- Derler S, Spierings AB, Schmitt KU. Anatomical hip model for the mechanical testing of hip protectors. Medical engineering & physics. 2005;27(6):475-485. https://doi.org/10.1016/j.medengphy.2005.02.001
- Van Thanh P, Tran DT, Nguyen DC, Duc Anh N. Nhu Dinh D, El-Rabaie S, Sandrasegaran K. Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers. Arabian Journal for Science and Engineering. 2019;44:3329-3342. https://doi.org/10.1007/s13369-018-3496-4
- Zhong Z, Chen F, Zhai Q, Fu Z, Ferreira JP, Liu Y, Liu T. A real-time pre-impact fall detection and protection system. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018;1039-1044.
- Ahn S, Choi D, Kim J, Kim S, Jeong Y, Jo M, Kim Y. Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system. Sens. Mater. 2018;30(8):1743-1752. https://doi.org/10.18494/SAM.2018.1876
- Kim S, Kim Y, Kwon T, Kim D, Kim N. Dynamic Characterization of Fall for Development of Fracture Prevention System. Journal of Biomedical Engineering Research. 2007;28(6):811-816. https://doi.org/10.9718/JBER.2007.28.6.811
- Tamura T, Yoshimura T, Sekine M, Uchida M, Tanaka O. A wearable airbag to prevent fall injuries. IEEE Transactions on Information Technology in Biomedicine. 2009;13(6):910-914. https://doi.org/10.1109/TITB.2009.2033673
- Jung H, Koo B, Kim J, Kim T, Nam Y, Kim Y. Enhanced algorithm for the detection of preimpact fall for wearable airbags. Sensors. 2020;20(5):1277.
- Yu X, Jang J, Xiong S. A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors. Frontiers in Aging Neuroscience. 2021;13:692865.
- Sucerquia A, Lopez JD, Vargas-Bonilla JF, SisFall: A fall and movement dataset. Sensors. 2017;17(1):198.
- Ketcham CJ, Seidler RD, Van Gemmert AW, Stelmach GE. Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2002;57(1):P54-P64. https://doi.org/10.1093/geronb/57.1.P54
- Alizadeh J, Bogdan M, Classen J, Fricke C. Support vector machine classifiers show high generalizability in automatic fall detection in older adults. Sensors. 2021;21(21):7166.
- Klenk J, Schwickert L, Palmerini L, Mellone S, Bourke A, Ihlen EA, FARSEEING Consortium. The FARSEEING realworld fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls. European review of aging and physical activity. 2016;13:1-7. https://doi.org/10.1186/s11556-016-0168-9
- Lee JK. Study on vertical velocity-based pre-impact fall detection. Journal of Sensor Science and Technology. 2014;23(4):251-258. https://doi.org/10.5369/JSST.2014.23.4.251
- Degen T, Jaeckel H, Rufer M, Wyss S. SPEEDY: A Fall Detector in a Wrist Watch. In ISWC. 2003;3:184-187. https://doi.org/10.1109/ISWC.2003.1241410
- Bourke AK, O'Donovan KJ, Nelson J, OLaighin GM. Fall-detection through vertical velocity thresholding using a triaxial accelerometer characterized using an optical motion-capture system. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008;2832-2835.
- Kim Y, Jung H, Koo B, Kim J, Kim T, Nam Y. Detection of pre-impact falls from heights using an inertial measurement unit sensor. 2020;Sensors, 20(18):5388.