• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.028 seconds

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Experimental investigation of the behaviour of a steel sub-frame under a natural fire

  • Santiago, Aldina;Simoes da Silva, Luis;Vaz, Gilberto;Vila Real, Paulo;Lopes, Antonio Gameiro
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.243-264
    • /
    • 2008
  • This paper details a testing facility ("NATURAL FIRE FACILITY") that allows closely-controlled experimental testing on full-scale sub-frames while reproducing the spatially transient temperature conditions measured in real fires. Using this test facility, an experimental investigation of six steel sub-frames under a natural fire was carried out at the Department of Civil Engineering of the University of Coimbra. The main objective of these tests was to provide insight into the influence of these connection types on the behaviour of steel sub-structures under fire. The experimental layout is defined by two thermally insulated HEA300 columns and an unprotected IPE300 beam with 5.7 m span, supporting a composite concrete slab. Beam-to-column connections are representative of the most common joint type used on buildings: welded joints and extended, flush and partial depth plate. Finally, the available results are presented and discussed: evolution of the steel temperature; development of displacements and local deformations and failure modes on the joints zone.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Analysis of the UHP-SFRCC(Ultra High Performance Steel Fiber Reinforced Cementitious Composites) I section Prestressed beam. (초고강도 섬유보강 시멘트 복합체 I형 프리스트레스트 보의 거동 해석)

  • Han Sang Mook;Kim Sung Wook;Kang Su Tae;Kang Jun Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • The objective of this paper is to investigate and analyze the behaviour of prestressed I section structural members constructed with ultra high perfomance steel fiber reinforced cementitious concrete (SFR-UHPC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The parameters of test specimens were span to depth ratio, prestressing force, prestressing wire placement and web width. Most influential parameter to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone should be redefined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Characteristics of Undrained Shear Behavior for Nak-Dong River Sand Due to Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.916-923
    • /
    • 2005
  • In this study, to observe aging effect of undrained shear behavior for Nak-Dong River sand, undrained static and cyclic triaxial tests were performed with changing relative density ($D_r$), consolidation stress ratio($K_c$) and consolidation time. As a result of the test, the modulus of elasticity to all samples estimated within elastic zone by the micro strain of about 0.05% in case of static shear behavior increased with the lapse of consolidation time significantly, so aging effect was shown largely. Also strength of phase transformation point(S_{PT}$) and strength of critical stress ratio point($S_{CSR}$) increased with the lapse of consolidation time. Undrained cyclic shear strength($R_f$) obtained from the failure strain 5% increased in proportion to relative density($D_r$) and initial static shear stress($q_{st}$), $R_f$ of consolidated sample for 1,000 minutes increased about 10.6% compared to that for 10 minutes at the loose sand, and $R_f$ increased about 7.0% at the medium sand. In situ application range of $R_f$ to the magnitude of earthquake for Nak-Dong River sand was proposed by using a increasing rate of $R_f$ as being aging effect shown from this test result.

  • PDF

The Effect of PWHT on Fracture Toughness in HAZ of Cr-Mo Steel (Cr-Mo鋼 熔接熱影響部 의 破壞靭性 에 미치는 熔接後 熱處理 의 影響)

  • 정세희;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1984
  • Post weld heat treatment(PWHT) of weldment of the low alloy steel is carried out to remove residual stress existing in weldment and to improve fracture toughness, but it is often observed that there occurs grain boundary failure and that fracture toughness decreases in weld heat affected zone(HAZ)because of PWHT. In this paper, the effect of heating rate and holding time of PWHT on fracture toughness were evaluated by crack opening displacement (CDD)test and micro-hardness test under the constant stress simulated residual stress in HAZ of Cr-Mo steel. The experimental results are as follow; (1)Transition temperature of weld HAZ after PWHT was dependent upon heating rate greater than holding time, and fracture toughness was decreased with an increase of the heating rate. (2)Softening ration of the notch tip was increased with holding time within one hour and saturated after one hour, but under applied stress it was increasing continuously. (3)The average hardness value in weld HAZ was increased with heating rate of PWHT.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Mechanical Behavior of Anchorage Zones in Prestressed Concrete Members with Single and Closely-Spaced Anchorages (단일텐던 및 복수텐던이 설치된 프리스트레스트 콘크리트 부재의 정착부 거동 연구)

  • Oh, Byung Hwan;Lim, Dong Hwan;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1329-1339
    • /
    • 1994
  • The purpose of present study is to explore the mechanical behavior of anchorage zones in prestressed concrete members with single and closely-spaced multiple tendon anchorages. The cracking loads and local stress distributions at these anchorage zones are studied. To this end, a series of experiments have been conducted. From this study, it is found that the failure of anchorage zones of the closely-spaced multiple tendon members is initiated by cracking along the tendon path and that the tensile stresses arising in the vicinity of anchorage zone of the first tendon are reduced due to additional compression of the second tendon. This results in the increase of cracking capacity of the member. The effects of multiple tendons are presented in the form of strain distribution and cracking load comparisons.

  • PDF

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.