• Title/Summary/Keyword: failure testing

Search Result 1,208, Processing Time 0.024 seconds

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

Analysis of CTOD Tests on Steels for Liquefied Hydrogen Storage Systems Using Hydrogen Charging Apparatus (수소 장입 장치를 활용한 액체수소 저장시스템 강재의 CTOD 시험 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • Hydrogen infiltration into metals has been reported to induce alterations in their mechanical properties under load. In this study, we conducted CTOD (Crack Tip Opening Displacement) tests on steel specimens designed for use in liquid hydrogen storage systems. Electrochemical hydrogen charging was performed using both FCC series austenitic stainless steel and BCC series structural steel specimens, while CTOD testing was carried out using a 500kN-class material testing machine. Results indicate a notable divergence in behavior: SS400 test samples exhibited a higher susceptibility to failure compared to austenitic stainless steel counterparts, whereas SUS 316L test samples displayed minimal changes in displacement and maximum load due to hydrogen charging. However, SEM (Scanning Electron Microscopy) analysis results presented challenges in clearly explaining the mechanical degradation phenomenon in the tested materials. This study's resultant database holds significant promise for enhancing the safety design of liquid hydrogen storage systems, providing invaluable insights into the performance of various steel alloys under the influence of hydrogen embrittlement.

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.

Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid

  • Singh, Nishant Kumar;Sarkar, A.;Deo, Anandita;Gautam, Kirti;Rai, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide applicability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability distribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator (MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination ($R^2$), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the chi square tests are used for the comparison of the suitability of these methods. The results show that maximum likelihood method performs well for most of the cases studied and hence recommended.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Logarithmic Learning Effects (대수형 학습효과에 근거한 소프트웨어 신뢰모형에 관한 통계적 공정관리 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.319-326
    • /
    • 2013
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of logarithmic hazard learning effects property.

Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

  • Habibzadeh, Sareh;Rajati, Hamid Reza;Hajmiragha, Habib;Esmailzadeh, Shima;Kharazifard, Mohamadjavad
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.170-175
    • /
    • 2017
  • PURPOSE. The aim of the present study was to evaluate the fracture resistances of zirconia, cast nickel-chromium alloy (Ni-Cr), and fiber-composite post systems under all-ceramic crowns in endodontically treated mandibular first premolars. MATERIALS AND METHODS. A total of 36 extracted human mandibular premolars were selected, subjected to standard endodontic treatment, and divided into three groups (n=12) as follows: cast Ni-Cr post-and-core, one-piece custom-milled zirconia post-and-core, and prefabricated fiber-glass post with composite resin core. Each specimen had an all-ceramic crown with zirconia coping and was then loaded to failure using a universal testing machine at a cross-head speed of 0.5 mm/min, at an angle of 45 degrees to the long axis of the roots. Fracture resistance and modes of failure were analyzed. The significance of the results was assessed using analysis of variance (ANOVA) and Tukey honest significance difference (HSD) tests (${\alpha}=.05$). RESULTS. Fiber-glass posts with composite cores showed the highest fracture resistance values ($915.70{\pm}323N$), and the zirconia post system showed the lowest resistance ($435.34{\pm}220N$). The corresponding mean value for the Ni-Cr casting post and cores was reported as $780.59{\pm}270N$. The differences among the groups were statistically significant (P<.05) for the zirconia group, as tested by ANOVA and Tukey HSD tests. CONCLUSION. The fracture resistance of zirconia post-and-core systems was found to be significantly lower than those of fiber-glass and cast Ni-Cr post systems. Moreover, catastrophic and non-restorable fractures were more prevalent in teeth restored by zirconia posts.

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws

  • Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.541-557
    • /
    • 2015
  • This research aims to analyze the fracture coalescence characteristics of brittle sandstone specimen ($80{\times}160{\times}30mm$ in size) containing various flaws (a single fissure, double squares and combined flaws). Using a rock mechanics servo-controlled testing system, the strength and deformation behaviours of sandstone specimen containing various flaws are experimentally investigated. The results show that the crack initiation stress, uniaxial compressive strength and peak axial strain of specimen containing a single fissure are all higher than those containing double squares, while which are higher than those containing combined flaws. For sandstone specimen containing combined flaws, the uniaxial compressive strength of sandstone increase as fissure angle (${\alpha}$) increases from $30^{\circ}$ to $90^{\circ}$, which indicates that the specimens with steeper fissure angles can support higher axial capacity for ${\alpha}$ greater than $30^{\circ}$. In the entire deformation process of flawed sandstone specimen, crack evolution process is discussed detailed using photographic monitoring technique. For the specimen containing a single fissure, tensile wing cracks are first initiated at the upper and under tips of fissure, and anti-tensile cracks and far-field cracks are also observed in the deformation process; moreover anti-tensile cracks usually accompanies with tensile wing cracks. For the specimen containing double squares, tensile cracks are usually initiated from the top and bottom edge of two squares along the direction of axial stress, and in the process of final unstable failure, more vertical splitting failures are observed in the ligament region. When a single fissure and double squares are formed together into combined flaws, the crack coalescence between the fissure tips and double squares plays a significant role for ultimate failure of the specimen containing combined flaws.

A Study on the Factors Influencing on the Salesperson's Resistance to SFA (영업사원의 SFA(영업자동화시스템)에 대한 저항에 영향을 미치는 요인들에 대한 연구)

  • Park, Chan Wook;Li, Liang;Cho, Ara
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.15-31
    • /
    • 2016
  • Sales Force Automation (SFA) is a strategic information system and one of the components of operational CRM system. SFA supports salespeople's activities such as selection of potential customers, creative value proposition, after-sales services, etc. SFA is increasingly used in many companies because it has the advantages to raise the salespeople's productivity by developing forecasting ability, value proposition ability, after sales service ability etc. Many researches have shown that implementation of SFA leads to the increase of salepeople performance, organizational performance, and quality of customer relationship. However, Some prior studies have discussed on the SFA implementation failure and pointed out that one of important causes of this failure is salespeople's resistance to SFA. Although many researches explain SFA acceptance phenomenon using Technology Acceptance Model (TAM) and Theory of Planned Behavior (TPB), these researches didn't deeply investigate the salespeople's resistance to SFA. Therefore, this study focuses on the factors influencing salespeople's resistance to SFA and the relationships among these factors. This study identified three factors (salespeople's perceived loss of power, perceived loss of autonomy, and perceived time and effort waste) influencing salespeople's resistance to SFA. The hypotheses testing results showed that salespeople's perceived loss of power and perceived time and effort waste significantly increased salespeople's resistance to SFA. And salespeople's perceived loss of power plays a mediating role between perceived loss of autonomy/perceived time and effort waste and salespeople's resistance to SFA. At the end of the paper, theoretical and managerial implications of this study and the limitations and future research directions are discussed.