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Abstract: Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue

failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later

parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide appli-

cability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability dis-

tribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating

Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator

(MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of

synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial

fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained

by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination

(R2), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the

chi square tests are used for the comparison of the suitability of these methods. The results show that maximum

likelihood method performs well for most of the cases studied and hence recommended.

Key words: Weibull distribution, vortex shedding, synovial fluid, least square estimation method, maximum like-

lihood estimator, method of moment

I. Introduction

Synovial fluid is a plasma dialysate, which is

modified by means of elements secreted by knee joint

tissues that implicated in reduced friction much

smaller than human made machines. The rheological

premises of synovial fluid sound to be particularly

suited for joint lubrication [1]. In recent years, a

considerable amount of work had been reported

which exhibits viscoelastic properties of synovial

fluid in human knee joints [2,3,4,5]. To establish the

viscoelastic nature of synovial fluid, content of the

same i.e. hyaluronic acid which is an essential com-

ponent, varies with age [2]. Concentration of hyaluronic

acid is highest between 18 to 25 years and between

the ages of 30 to 80, in normal joints no changes is

observed [2,6]. Dynamic shear moduli at various strain

frequencies at various temperatures show the viscoe-

lastic nature of synovial fluid [7].

Balazs plotted typical set of values of the elastic

and viscous moduli as a function of strain frequency

from synovial fluid samples of two normal knee

joints of ages 20 and 67 years and one from osteo-

arthritic knee joint aged 63 years [2]. Results showed

that as the strain frequency increases, both elastic

and viscous moduli increase, that is different in

pathological fluid considering strain frequencies in

range to which the fluid was exposed in the course of

normal movement of the knee joint (flexion, extension,

walking and running). 

However, Pekkan, Nalim and Yokota [8] predicted

Corresponding Author : A. Sarkar

Department of Mechanical Engineering, Indian Institute of

Technology, (Banaras Hindu University), Varanasi, India

TEL: +91-542-6702929

E-mail: arnab.mec@iitbhu.ac.in



Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid - Nishant Kumar Singh et al.

22

shear stress induced by the synovial fluid flow on the

knee joint cells and examined the oscillatory flow of

Newtonian synovial fluid. Stress created due to the

flow of synovial fluid during the joint motion may

lead to bone degeneration and its ultimate failure.

Possible development of stress may occur if the natural

frequency of the bone structure matches with the

frequency of vortex shedding and the corresponding

synovial flow velocity ranges can be termed as critical

velocity ranges. Expected number of stress cycles in

the projected working life of bone structure is related

to the expected number of hours in critical flow

velocity ranges.

The Weibull distribution is a one-tailed continuous

probability distribution widely used in reliability and

life data analysis and failure analysis of material due

to its versatility [9,10]. Hence, to analyse the vortex

induced vibration on the knee joint, the flow pattern

of the synovial fluid is modelled using the two-

parameter Weibull distribution, as there is a direct

relation between the stress induced by the flow of the

fluid and the velocity gradient of the synovial fluid as

studied by King [11,12]. Hence, forecasting the velocity

distribution of the synovial fluid flow velocities is

very much important and vital. The Weibull distribu-

tion function gives the probability of failure of any

given specimen under test. Involved parameters i.e.

‘k’ and ‘s’ parameters have to be approximated for an

offered pair of data to depict the concerned random

variety of the velocity distribution set by the Weibull

model. 

Several numerical techniques are available to esti-

mate the Weibull parameters [1,13]. Among these

techniques, three are most widely used methods

namely, least square estimation method (LSEM),

maximum likelihood method (MLE) and method of

moment (MOM). These methods are currently used

to estimate the Weibull parameters in many fields of

engineering that include wind speed distribution and

energy applications [13,14] along with other criterions

to determine the efficiency of these methods to give

a precise estimate of the Weibull parameters. Different

methods suit the requirement of the estimation that

depends on the data set, their distribution, and the

data size [14].

II. Background

Two-parameter Weibull distribution is defined by

the probability density function given as:

(1)

for v > 0, where v is the velocity of synovial fluid flow,

‘k’ is the dimensionless shape parameter and ‘s’ is

the scale parameter that has a dimension same as

the velocity. The ‘k’ parameter determines the shape

of the distribution. The ‘k’ parameter of Weibull dis-

tribution is also called Weibull slope because it is the

slope of the straight line of the distribution drawn in

the Weibull probability paper. Larger value of k gives

narrower distribution and hence a higher peak value

of the curve. The cumulative distribution function

(CDF) for a variable v having Weibull distribution is

given by:

(2)

Cumulative probabilities are calculated by CDF,

given in Eq. (2) [15].

1. Methods for estimating Weibull parameters

Three methods, widely used to estimate the Weibull

parameters, are discussed briefly:

(1) Least square estimation method [LSEM]

Transformation of distribution functions of Weibull

in Eq. (2) into a linear form by taking double logarithm

on both the sides and rearranging as follows:

ln(−ln(1 − F(v))) = k ln v − k ln s (3)

The cumulative probability, F(v) can be calculated

for n samples after arranging the values of v in

ascending order such that v1 < v2 < v3
... ...vn. F(v) can

be determined using the order statistics of Wilks

(1948) [24] :

Substituting the parameters of F(v) evaluated by

Wilks in Eq. (3), the following equation is obtained:

= k ln v − k ln s (4)
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where, i is the rank of the velocity, which was sorted

in ascending order and n is the ensemble size. The

Weibull parameters, k and s can be estimated by a

straight line fitting in the plot of ln(−ln(n−i+0.7)/

(n+0.4)) verses ln v. The slope of the best-fit line gives

the ‘k’ parameter.

(2) Maximum likelihood estimator [MLE]

MLE provides a direct procedure for determining

Weibull parameters. The likelihood of obtaining a

particular value of v is directly related to its prob-

ability density function of v. Hence, Ghosh [17] and

Ang et al. [18] described the likelihood of obtaining n

independent observations, v1, v2, v3 …, vn. To obtain

parameters of Weibull distribution, equation derived

by Ang et al., is transformed to get Eq. (5) and Eq.

(6) for ‘k’ and ‘s’.

(5)

(6)

Substituting Eq. (6) in Eq. (5), the following equation

is obtained:

(7)

Eq. (7) was solved by Newton-Raphson iterative

method to obtain the value of ‘k’. By substituting the

value of k into Eq. (6), the value of ‘s’ can be deter-

mined.

(3) Method of moment [MOM]

The synovial fluid velocities following Weibull dis-

tribution with parameters ‘k’ and ‘s’ have mean and

variance as described by Razali et al. [19]. Since,

direct solutions of the equation given by Razali et al.,

are not obtained, solutions for equation described by

him are obtained by graphical approach with modified

equation given below.

(8)

where CV is the coefficient of variation defined as ,

μ and σ are the mean and standard deviation of the

synovial fluid flow velocities respectively.

A graph of CV2 verses different values of ‘k’ is

plotted in MATLAB. CV2 is determined by computing

the mean and variance of the synovial fluid flow

velocities and the corresponding ‘k’ value for the

computed CV2 is obtained from the graph. Fig. 1 shows

the graph of CV2 vs. ‘k’. Estimation of parameter ‘s’ is

performed by using the equation as follows:

(9)

III. Method

The aim of this study is to determine a suitable
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Fig. 1. Graph showing plot of CV2 vs. k.

Fig. 2. Velocity profile of synovial fluid flow.
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method for determining the Weibull parameters that

would describe the velocity distribution of synovial

fluid by considering the curve of velocity profile of

synovial fluid flow as shown in Fig. 2. The range of

velocity of synovial fluid during different knee motion

was already determined and set to 10.00 m/s to 0.00

m/s for knee flexion and 0.00 m/s to 2.50 m/s for knee

extension [20]. For the range of velocities obtained,

significant values of ‘k’ and ‘s’ parameters are

determined for three sets of velocities simulated by

using the mean and standard deviation of the data.

Thereafter, the two parameters of Weibull distribu-

tion are determined by LSEM, MLE and MOM with

sample sizes of 50, 100, 200, 400, 500, 800 and 1000. 

However, data sets for velocities of synovial fluid

flow are obtained by manually generated statistical

algorithm in MATLAB software. This is similar to

the analysis carried out by Ghosh [17], in FORTRAN

program but with specified ‘k’ and ‘s’ parameters to

generate random numbers, following the Weibull

distribution based on the hypothesis that CDF of a

continuous variable has a uniform distribution in the

range 0 to 1 [22,23].

In our study, generated data must lie in the

physiological range of synovial fluid flow velocity, so

a random sample of 106 pseudorandom numbers are

generated and uniformly distributed in the range 0

to 1. The ‘k’ and ‘s’ parameters are initially set as 2

and 4 respectively and the 106 computer generated

pseudorandom numbers were treated as cumulative

probabilities of the variable ‘v’. Rearranging Eq. (2)

and solving for ‘v’ with the above Weibull parameters,

the following equation is obtained:

(10)

The velocity values ranging from 0 to 10 m/s are

selected from the generated sample to make different

sets of velocities. Resulting approximate data from

mean and standard deviation are treated as the actual

values of ‘k’ and ‘s’. For the comparison and esti-

mation of the suitability of methods, probabilities

determined from Weibull function with these para-

meters are treated as theoretical values, which are

compared with the observed cumulative probabilities

given by the order statistics described by Wilks [24].

However, three values of ‘k’ (2.911, 2.904 and 3.37)

and ‘s’ (1.773, 1.764 and 4.964) parameters are used

respectively to determine the accuracy of these methods

for three different sets of simulated data. The com-

parisons of these three methods have been carried

out by the criterions such as percent error (pe), root

mean square error (RMSE), coefficient of determi-

nation (R2), Komolgorov-Smirnov (K-S) test and chi

square test.

(1) Goodness of fit

To determine goodness of Weibull distribution to fit

the simulated data, these tests are performed at 5%

of significance level or 95% confidence interval [14].

Both K-S and chi square tests are non-parametric

tests, suitable for unknown distribution and data set

[15,21]. In this study, these tests are adopted to

examine whether the probability distribution function

with the Weibull parameters obtained from the

samples (theoretical probability distribution function)

is suitable to describe the synovial fluid flow velocity

or not. In both the methods, comparisons of two CDFs

are performed to test whether there is any significant

difference between them. 

K-S test determines the absolute value of the maxi-

mum error between two CDFs. Critical value evaluated

for K-S test at 5% significance level for one sample is

as follows [14]:

(11)

The hypotheses that there is no significant difference

between the two CDFs was rejected if Q > Q95. To

compare the suitability of the methods, least value of

Q has been considered for the better performance of

test.

whereas, chi square has the form:

(12)

where, Ti is the theoretical frequency of variable v

determined from the CDF with specified Weibull

parameters and Ei is the expected frequency that can

be determined from the observed probability described

v s* 1 f v( )–( )–( )
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by order statistics of Wilks [24]. χ2 gives a measure

of discrepancy between the observed frequency and

the expected frequency. Hence χ2 = 0 shows that the

two frequencies are exactly same. Larger the value of

χ
2 represents greater difference between the observed

and the expected frequencies [15]. The critical value

of  at α = 0.05 can be determined from the chi

square distribution table for degrees of freedom n-m-

1 where n is the size of the sample or classes if data

has been binned and m is the number of distribution

parameters. The number of Weibull parameters in

this case is 2 and hence, m = 2. Therefore, the number

of degrees of freedom is n − 3. If χ2 < , it was

concluded that there was no significant difference

between the observed and expected frequencies and

the simulated velocities can be well described by

theoretical Weibull distribution. To compare the suit-

ability of the methods, least value of χ2 was considered

for the better performance of the test.

In continuation with above tests, RMSE has been

considered with parameter of accuracy in CDFs. To

determine RMSE, residuals are calculated by the

difference between the observed probability (pi) and

theoretical probability (pic). Squaring the residuals,

averaging the squares, and taking the square root

gives us the RMSE.

R2 is also determined between the observed prob-

ability and the theoretical probability to test the

suitability of the methods by the following equation:

(13)

where pi is the observed probability, pic is the theor-

etical probability and pavg is the mean of the observed

probabilities. Value of R2 approaching 1 indicates

that the data fitted by the theoretical distribution is

well suited. 

χα
2

χα n 3–( ),
2

R
2

1
Σn

i 1=
pi pic–( )2[ ]

Σn

i 1= pi pavg–( )2[ ]
-------------------------------------–=

Table 1. Percent errors (pe) of Weibull parameters, RMSE and max-error in cdf between Weibull function and generated data,

coefficient of determination (R2) and Chi square values with various sample size for true value of k = 2.911, s = 1.7993 m/s.

n
 Least Square Estimation Method

k s(m/s)  pe of k pe of s max error of cdf  RMSE R2
χ
2(DOF)

50 1.9497  1.8029  33.02 0.20  0.0941 0.0468 0.9733  21.1089(47)

100 2.2625  1.8091  22.27 0.54  0.0730 0.0362 0.9841  18.0000(15)

200 2.3998  1.7832  17.56 0.89  0.0584 0.0208 0.9948  21.6818(16)

400 2.6189  1.8327  10.03 1.80  0.0406 0.0192 0.9956  22.7015(19)

500 2.6080  1.8084  10.40 0.50  0.0414 0.0203 0.9951  23.8082(20)

800 2.7173  1.8165 6.65 0.95  0.0261 0.0138 0.9977  24.5612(21)

1000 2.7920  1.8042 4.08 0.27  0.0196 0.0096 0.9989  19.2216(22)

Maximum Likelihood Method

50 2.5269  1.7195  13.19 4.40 0.0781  0.0247 0.9926 4.2104(47)

100 2.7648  1.7537  5.00 2.53  0.0442 0.0186 0.9958  9.6667(15)

200 2.6480  1.7678  9.00 1.75  0.0584 0.0199 0.9952  16.6273(16)

400 2.8761  1.8111  1.19 0.65  0.0409 0.0134 0.9978  19.9763(19)

500 2.8492  1.8102  2.12 0.60  0.0301 0.0126 0.9981  24.8180(20)

800 2.9106  1.8021  0.07 0.15  0.0198 0.0088 0.9991  26.8053(21)

1000 2.9160  1.7951  0.17 0.23  0.0152 0.0054 0.9997  16.5476(22)

 Method of Moment

50 2.535  1.7267  12.90  4.00 0.0749 0.0241 0.9929  4.0395(47)

100 2.758  1.7590  5.30  2.20 0.0420 0.0175 0.9963  11.6667(15)

200 2.623  1.7634  9.89  1.99 0.0615 0.0204 0.9950  16.1545(16)

400 2.858  1.8133  1.82  0.78 0.4040 0.0130 0.9980  20.2974(19)

500 2.824  1.8121  2.98  0.71 0.0302 0.0122 0.9982  24.3173(20)

800 2.894  1.8038  0.58  0.25 0.0196 0.0086 0.9991  26.8053(21)

1000 2.907  1.7961  0.14  0.18 0.0152 0.0054 0.9997 16.5476(22)
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IV. Results

To analyze the performance of the three methods in

estimating the Weibull parameters for vortex shedding

analysis of synovial fluid, various combinations of

parameter values and numbers of random variables

are tested in this study. Tables 1-3, list the percent

errors between the true Weibull parameters and the

estimated parameters for three methods with sample

size varying as 50, 100, 200, 400, 500, 800 and 1000.

The tables also list the maximum error in the CDFs,

RMSE, R2 and the chi square values. The critical

values at 95% confidence interval in K-S and chi square

tests for different sample sizes are listed in Table 4. 

V. Discussions

In this current study, we reported that the maxi-

mum errors in the CDFs never exceeds the corres-

ponding critical values for the K-S test implying that

the theoretical Weibull distribution with its parameters

estimated by different methods is appropriate to

describe the observed velocity distribution. 

However, the most appropriate method for deter-

mining Weibull parameters can be estimated from

the value of maximum error between CDFs. It has

been observed that the maximum error was least in

MOM followed by MLE. In Table 2, it has been

observed that the value of chi square for LSEM and

MOM for sample size 100 exceeded the corresponding

critical value at 5% significance level. In addition, chi

square value for LSEM for sample size 200 exceeded

the corresponding critical value in Table 3. It implies

that the theoretical model becomes inappropriate to

describe the actual distribution. The MLE gave satis-

factory results for all the sample sizes and various

Table 2. Percent errors (pe) of Weibull parameters, RMSE and max-error in cdf between Weibull function and generated

data, coefficient of determination (R2) and Chi square values with various sample size for true value of k = 2.904,

s = 1.7948 m/s.

n
 Least Square Estimation Method

k s(m/s)  pe of k  pe of s  max error of CDF RMSE R2
χ
2(DOF)

50 3.5117  1.6746 20.92 6.60  0.0799 0.0370  0.9833 6.3299(47)

100 3.0571  1.7058 5.27 4.90  0.0638 0.0282  0.9904 28.9405(14)

200 2.9725  1.7157 2.35 4.40  0.0354 0.0142  0.9976 10.2825(16)

400 2.9356  1.7444 1.08 2.80  0.0229 0.0098  0.9989 14.0711(19)

500 2.9571  1.7769 1.83 0.90  0.0218 0.0088  0.9991 15.7663(20)

800 3.0087  1.7799 3.61 0.55  0.0312 0.0133  0.9979 30.6798(21)

1000 2.9722  1.7686 2.35 1.29  0.0296 0.0129  0.9980 27.4228(22)

Maximum Likelihood Method

50 3.4069  1.6768  17.31 6.50  0.0837 0.0381 0.9823 6.9572(47)

100 2.9523  1.7081  1.66  4.80  0.0681 0.0307 0.9886  21.8571(14)

200 2.9585  1.7163  1.87  4.37  0.0362 0.0145 0.9975  8.8553(16)

400 2.9152  1.7465  1.12  2.70  0.0235 0.0094 0.9989  14.9000(19)

500 2.9611  1.7766  1.96  1.00  0.0215 0.0087 0.9991  16.5489(20)

800 2.9362  1.7837  1.10  0.60  0.0306 0.0131 0.9979  25.9900(21)

1000 2.9122  1.7711  0.28  1.30  0.0297 0.0129 0.9980  23.6791(22)

Method of Moment

50 3.4580  1.6763 19.07 6.60 0.0823 0.0376 0.9828 6.5937(47)

100 2.9870  1.7078 2.85 4.80 0.0670 0.0298 0.9892 27.5238(14)

200 2.9580  1.7160 1.85 4.40 0.0360 0.0145 0.9975 8.8553(16)

400 2.9090  1.7458 0.17 2.29 0.0229 0.0092 0.9990 14.9921(19)

500 2.9600  1.7764 1.93 1.00 0.0214 0.0087 0.9991 15.4185(20)

800 2.9470  1.7829 1.49 0.60 0.0306 0.0130 0.9980 28.7997(21)

1000 2.9240  1.7706 0.68 1.30 0.0297 0.0128 0.9980 25.1377(22)
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degrees of freedom. 

Hence, it can be stated that if the data fits the

Weibull function, all the three methods are applicable

to estimate the parameters, but if not, MLE per-

formed the best followed by MOM. 

Further, to test the suitability of LSEM, the chi

square test is performed at 1% significance level. It

depicts that the calculated Chi square value did not

exceed the corresponding critical value at 1% signi-

ficance level. Hence, the accuracy of the method was

justified. The deviation of the least square method in

the chi square test for the aforementioned cases may

be attributed by the randomness of the data or

binning the data into classes, thus making the method

less efficient for samples sizes ranging from 100 to 200. 

It has been observed that the percent error obtained

by LSEM are larger than those obtained by other

methods with the maximum error being more than

30% in the ‘k’ parameter for sample size 50 and

below. For MLE and MOM, the highest error was

approximately from 12 to 13% for small sample size

of 50. It proposes that the performance of least square

method is worst when the sample size is smaller. The

other two methods performed comparatively well even

at small sample sizes with MLE giving satisfactory

result in most of the cases. With the increase in the

Table 3. Percent errors (pe) of Weibull parameters, RMSE and max-error in cdf between Weibull function and generated data,

coefficient of determination (R2) and Chi square values with various sample size for true value of k = 3.37, s = 4.964 m/s.

n
 Least Square Estimation Method

K’ s’(m/s)  pe of k  pe of s  max error of cdf RMSE  R2
χ
2(DOF)

50 3.8395  4.7742 13.93 3.80 0.0712 0.0380 0.9824  10.7643(47)

100 4.0269  4.8069 19.49 3.20 0.0460 0.0188 0.9954  17.2500(14)

200 3.7624  4.9261 11.64 0.70 0.0486 0.0217 0.9943  31.8392(16)

400 3.4071  4.9017 1.10 1.20 0.0282 0.0098 0.9989  22.6430(19)

500 3.4673  4.9287 2.80 0.71 0.0243 0.0085 0.9991  17.8750(19)

800 3.4232  4.9267 1.60 0.75 0.0279 0.0092 0.9990  21.9099(19)

1000 3.4879  4.9855 3.50 0.40 0.0207 0.0056 0.9996  19.8328(22)

Maximum Likelihood Method

50 3.8433  4.7653  14.04 4.00 0.0068 0.0371 0.9832 10.6933(47)

100 3.9017  4.8184  15.78 2.90 0.0532 0.0191 0.9956 16.3571(14)

200 3.6527  4.9459  8.400 0.30 0.0442 0.0182 0.9960 25.1584(16)

400 3.4412  4.8933  2.100 1.40 0.0249 0.0091 0.9990 22.4509(19)

500 3.4927  4.9230  3.600 0.83 0.0220 0.0081 0.9992 20.9583(19)

800 3.4857  4.9185  3.400 0.92 0.0237 0.0084 0.9992 19.2149(19)

1000 3.4738  4.9860  3.100 0.44 0.0213 0.0057 0.9996 16.9383(22)

 Method of Moment

50 3.9100  4.7654 16.02  4.00  0.0710  0.0369 0.9834  9.9640 (47)

100 3.9510  4.8154 17.24  2.90  0.0508  0.0190 0.9956 18.8095(14)

200 3.6360  4.9396  7.89 0.49  0.0419  0.0174 0.9964 26.1908(16)

400 3.4510  4.8936  2.40 1.40  0.0246  0.0091 0.9990 22.9904(19)

500 3.4980  4.9232  3.79 0.82  0.0219  0.0081 0.9992 22.7917(19)

800 3.3310  4.9302  1.15 0.68  0.0321  0.0121 0.9982 21.7507(19)

1000 3.4810  4.9856  3.30 0.43  0.0210  0.0056 0.9996 17.5114(22)

Table 4. Critical values at 95% confidence interval of

Kolmogorov-Smirnov test (Q95) for various sample size n and

Chi square statistics χ2(0.05) for varying degree of freedom.

n Q95  Degree of freedom χ2(0.05)

50 0.192 14 23.68

100 0.136 15 25.00

200 0.096 16 26.30

400 0.068 19 30.14

500 0.0608 20 31.41

800 0.048 21 32.67

1000 0.043 22 33.92

67.50 47



Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid - Nishant Kumar Singh et al.

28

sample size, the performance of the LSEM is improved

with percent error reaching up to 3% for the sample

size of 1000. For this sample size, the percent error

given by MLE and MOM was reduced to 0.1 to 0.2%.

The maximum errors in the CDF obtained by LSEM

are found to be larger in most of the cases, which

improves with increasing data number with highest

error over 8% for ‘k’. The RMSE follows the similar

trend as other errors, where it decreases as the

sample size increases with LSEM giving larger error

than the other two methods in most of the cases. 

The R2 has large values for all the observations

where it is approaching 1. It shows high degree of

correlation between observed CDF and the CDF

generated by the Weibull function using the meth-

odology mentioned in Sec. 3, justifying that the

techniques are suitable. It has been observed that

the R2 has not much discrepancy between observations

for all the three methods. The MLE performed better

among all mentioned methods for determining the

Weibull ‘k’ parameter. Figs. 3-5 show the estimated

values of ‘k’ and ‘s’ parameters by three methods for

different combinations of true values of the Weibull

parameters with varying data number. The curves of

estimated values of ‘k’ by MLE and MOM coincide

with each other, which imply that the values esti-

mated by these two methods are similar, and vary

from values estimated by LSEM. The curves of esti-

mated values of ‘s’ determined by three methods do

not show any difference and coincide with each other.

In addition, the parameter error for Weibull ‘s’ para-

meter does not show much discrepancy between

different methods with the highest error being 3%. It

decreases up to 0.1% as the sample size increases.

Fig. 5. Weibull shape ‘k’ and scale ‘s’ parameters calculated

by different methods (k = 3.37, s = 4.964 m/s).

Fig. 6. ko/ka vs. n calculated by different methods for ka = 2.911.

Fig. 3. Weibull shape ‘k’ and scale ‘s’ parameters calculated

by different methods (k = 2.911, s = 1.7993 m/s).

Fig. 4. Weibull shape ‘k’ and scale ‘s’ parameters calculated

by different methods (k = 2.904, s = 1.7948 m/s).
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Hence, all the three methods are suitable to determine

‘s’ parameter of Weibull distribution. 

However, for ‘k’ parameter error in terms of k0/ka

as shown in Figs. 6-8, where k0 is the observed value

of ‘k’ parameter estimated by different methods with

varying data number for a particular combination of

‘k’ and ‘s’ parameters and ka is the actual or targeted

value of ‘k’ parameter. 

It is evident that when sample size increases,

observed probabilities will tend to the theoretical prob-

abilities and hence the ratio will approach towards

unity.

VI. Conclusions

In this paper, the performance of three methods

namely LSEM, MLE and MOM for determining

Weibull parameters for vortex shedding analysis of

synovial fluid has been compared. The parameters

for comparison are percent error, R2, RMSE and maxi-

mum error in CDF. The conclusions are drawn as

follows:

(a) In simulation tests, MLE performed better followed

by MOM for smaller sample sizes. The accuracy of

three methods enhances as the sample size increases

in most cases.

(b) MLE is rewarding for the estimation of shape

parameter of the Weibull distribution.

(c) All the three methods are suitable for the esti-

mation of scale parameter of Weibull distribution.

LSEM would be preferred for the ease of estimation

and less percent error while determining the value of

scale parameter.
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