Yield enhancement in semiconductor fabrication is important. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map, a new simple schema which facilitates the failure analysis.
In the semiconductor manufacturing, yield enhancement is an urgent issue. It is ideal to prevent all the failures. However, when a failure occurs, it is important to quickly specify the cause stage and take countermeasure. Reviewing wafer level and composite lot level yield patterns has always been an effective way of identifying yield inhibitors and driving process improvement. This process is very time consuming and as such generally occurs only when the overall yield of a device has dropped significantly enough to warrant investigation. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. The automatic method of failure pattern extraction from fail bit map provides reduced time to analysis and facilitates yield enhancement. This paper describes the techniques to automatically classifies a failure pattern using a fail bit map.
KIPS Transactions on Software and Data Engineering
/
v.2
no.4
/
pp.219-226
/
2013
Feature selection is the one of important issues in the field of machine learning and pattern recognition. It is the technique to find a subset from the source data and can give the best classification performance. Ie, it is the technique to extract the subset closely related to the purpose of the classification. In this paper, we experimented to select the best feature subset for improving classification accuracy when classify success and failure factors in software reuse. And we compared with existing studies. As a result, we found that a feature subset was selected in this study showed the better classification accuracy.
Seung-Yeol Yoo;Jun-Gyo Jang;Min-Sung Jeon;Jae-Chul Lee;Dong-Hoon Kang;Soon-Sup Lee
Journal of the Society of Naval Architects of Korea
/
v.60
no.6
/
pp.441-449
/
2023
With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
1999.05a
/
pp.704-707
/
1999
Partial discharge(PD) in air insulated electric power systems is responsible for considerable power lossesfrom high voltage transmission lines. PD in air often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge and may give rise to interference in ommunication systems. PD can indicate incipient failure. Thus understanding and classification of PD in air is very important to discern source of PD. In this paper, we investigated PD in air by using statical method. We classified air discharge with corona, surface discharge and cavity discharge by source of discharge. we used the mean pulse-height phase distribution $H_{qmean}(\psi)$, the max pulse-height phase distribution $H_{qmax}(\psi)$ , the pulse count phase distribution $H_n(\psi)$ and the max pulse height vs. repetition rate $H_{q}(n)$ for analysis PD pattern. We used statistical operators, such as skewness(S+. S-1, kurtosis(K+, K-), mean phase(AP+. AP-), cross-correlation factor(CC) and asymmetry from the distribution.
Objectives This research was proposed to present Clinical Practice Guideline(CPG) for Soyangin Disease of Sasang Constitutional Medicine (SCM) ; Chest-Heat congested(Hyunggyeok-yeol) Symptomatology. Methods This CPG was developed by the national-wide experts committee consisting of SCM professors. First, collection and organization of literature related to SCM such as Donguisusebowon, Text book of SCM, Clinical Guidebook of SCM and Fundamental research to standardize diagnosis of Sasang Constitutional Medicine was performed. Secondly, journals related to clinical trial or Human complementary medicine of SCM were searched. Finally, 4 articles were selected and included in CPG for Chest-Heat congested(Hyunggyeok-yeol) Symptomatology of Stomach Heat-based Interior Heat disease in Soyangin disease. Results & Conclusions CPG of Chest-Heat congested(Hyunggyeok-yeol) symptomatology in Soyangin disease includes classification, definition and standard symptoms of each pattern. Chest-Heat congested(Hyunggyeok-yeol) symptomatology is classified into mild and moderate pattern by severity. Chest-Heat(Hyunggyeok-yeol) symptomatology Mild pattern is classified into Chest-Heat congested(Hyunggyeok-yeol) initial pattern and Chest-Heat congested(Hyunggyeok-yeol) advanced pattern. And Chest-Heat congested (Hyunggyeok-yeol) moderate pattern is classified into Clear Yang Failure of Stomach(Weguck-cheongyang Bulsagnseung) pattern (Upper wasting-thirst(Sangso) pattern), Clear Yang Failure of Large Intestine (Daejang-cheongyang Bulsangseung) pattern (Middle wasting-thirst (Jungso) pattern).
Journal of Institute of Control, Robotics and Systems
/
v.4
no.6
/
pp.765-771
/
1998
An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.
High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.
The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.
The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long time due to the enormous number of WBMs. We suggest a two-step approach to discover the probable pattern on the WBMs in this paper. The first step is to separate the normal WBMs from the defective WBMs. We adapt a hierarchical clustering for de-noising, which nicely performs this work by wisely tuning the number of minimum points and the cutting height. Once declared as a faulty WBM, then it moves to the next step. In the second step, we classify the patterns among the defective WBMs. For this purpose, we extract features from the WBM. Then machine learning algorithm classifies the pattern. We use a real WBM data set (WM-811K) released by Taiwan semiconductor manufacturing company.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.