• Title/Summary/Keyword: failure example

Search Result 544, Processing Time 0.022 seconds

An Adaptive Failure Rate Change-Point Model for Software Reliability

  • Jeong, Kwang-Mo
    • International Journal of Reliability and Applications
    • /
    • v.2 no.3
    • /
    • pp.199-207
    • /
    • 2001
  • The failure rate functions between successive failures are of concatenated form. We allow the parameters of failure rate function change after a certain failure and its fixing. We confine out attention to a model wherein the interfailure times are described by its failure rate function. We suggest an adaptive failure rate function with a change-point under the assumption that interfailure times are record value statistics from a Weibull distribution. The proposed model will be applied through a practical example of software failure data.

  • PDF

A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System (원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰)

  • Han, Seok-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

Optimum Free Warranty Interval for Repairable Items (수리가능한 아이템의 최적무상보증기간)

  • 정영배
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.301-307
    • /
    • 1998
  • This paper proposes free warranty interval for repairable items when the failure types of item are considered. Failure types are classified into major failure and minor failure. If major failure occurs during warranty period, the item is replaced and if minor failure occurs during warranty period, the item is minimally repaired. This paper determines the optimum free warranty interval which minimizes total expected cost of the free warranty cost model. Numerical example is shown in which failure time of item has weibull distribution.

  • PDF

FLB Event Analysis with regard to the Fuel Failure

  • Baek, Seung-Su;Lee, Byung-Il;Lee, Gyu-Cheon;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.622-627
    • /
    • 1996
  • Detailed analysis of Feedwater Line Break (FLB) event for the fuel failure point of view are lack because the event was characterized as the increase in reactor coolant system (RCS) pressure. Up to now, the potential of the rapid system heatup case has been emphasized and comprehensively studied. The cooldown effects of FLB event is considered to be bounded by the Steam Line Break (SLB) event since the cooldown effect of SLB event is larger than that of the FLB event. This analysis provides a new possible path which can cause the fuel failure. The new path means that the fuel failure can occur under the heatup scenario because the Pressurizer Safety Valves (PSVs) open before the reactor trips. The 1000 MWe typical C-E plant FLB event assuming Loss of Offsite Power (LOOP) at the turbine trip has been analyzed as an example and the results show less than 1% of the fuel failure. The result is well within the acceptance criteria. In addition to that, a study was accomplished to prevent the fuel failure for the heatup scenario case as an example. It is found that giving the proper pressure gap between High Pressurizer Pressure Trip (HPPT) analysis setpoint and the minimum PSV opening pressure could prevent the fuel failure.

  • PDF

DES Approach Failure Diagnosis of Pump-valve System (펌프-밸브 시스템의 DES 접근론적 Failure Diagnosis)

  • Son, Hyung-Il;Kim, Ki-Woong;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.643-646
    • /
    • 2000
  • As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

  • PDF

Study of Failure Examples for Fuel Coagulation, Leakage, Low Grade Gasoline and Fuel Additives in Automotive Fuel System (자동차 연료 시스템에관한 연료 응고, 누설, 불량 휘발유 및 연료 첨가제에 의한 고장 사례 고찰)

  • Lee, IL Kwon;Kim, Young Gyu;Ko, Young Bae;Kim, Seung Chul
    • Tribology and Lubricants
    • /
    • v.28 no.4
    • /
    • pp.178-183
    • /
    • 2012
  • The fuel system of a vehicle is a very important compotent, as it provides the firing resources to the combustion chamber of the engine. However, improper operation of the system can generate bad condition or start-off during engine revolution. This study analyzed several examples of failure that had originated in the field. In the first example, the driver operated a vehicle containing both gasoline and LPG in the fuel tank, but the gasoline fuel remained unused for a few months. Therefore the fuel pump was clogged because of gasoline congelation. The second example, dealt with fuel leakage that occurred from the slightly torn O-ring connecting the fuel lines. The third example, pertained to engine damage and power-down owing to the usage of proor-quality fuel and ingredient. Therefore, it is necessary to take adequate measures to prevent the failure of the fuel system of vehicle.

A Comparative Analysis of Failure Rate, Effective Failure Rate and Equivalent Failure Rate of A System Composed of Identical Parallel Units (병렬구조 시스템의 고장률, 유효(有效) 고장률과 대등(對等) 고장률의 비교분석)

  • Cho, Kyung-Hwan
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.256-261
    • /
    • 2015
  • The aim of this paper is to present some issues to be discussed in relation to failure rate of a system that has identical parallel units. It is assumed that Time-to-Failure of each unit has the same exponential distribution and all units are repairable with a periodic maintenance of time interval T. Effective failure rate is widely recommended for nonrepairable systems as the reciprocal of MTTF but it should not be applied for repairable systems if delayed maintenance is used. And equivalent failure rate of an imaginary system is taken into consideration, the reliability value of which is the same as that of the redundant system when time interval T is given. With a numerical example, failure rate, effective failure rate, and equivalent failure rate of the redundant system are analyzed comparatively.

Age Replacement Policy for A System Considering Failure Characteristics of Components (부품(部品)의 고장특성(故障特性)를 고려한 시스템의 수명교환방침(壽命交換方針))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 1993
  • Most systems are composed of components which have different failure chracteristics. Since the failure characteristics of components is different, it is rational and reasonable to establish a maintenance model to be considered repair and replacement policies which are proper to failure characteristics of these components. This paper proposes the age replacement time for a system composed of components which have different failure characteristics. In this model, it is assumed that a system is composed of a critical failure component, a major failure component, minor failure component. If any failure occurs to critical component before its age replacement time, the system should be replaced. If any failure does not occur until its age replacement time, preventive replacement should be performed at age replacement time T. Major component is minimal repaired if any failure occurs during operation. Minor component should be replaced as soon as failure is found. This paper determines the optimal replacement time of the system which minimize, total maintenance cost and initial stock Quantity of minor component within this optimal replacement time. Numerical example illustrates these results.

  • PDF

PWF-GPH method for the statistical analysis of failure time data (고장시간 자료의 통계적 분석을 위한 PWF-GPH 방법)

  • 김선영;윤복식
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.114-128
    • /
    • 1996
  • In this paper, a life distribution fitting method based on generalized phase-type distributions(GPH) is presented. By fitting the life distribution to a GPH, we can utilize various useful properties of the GPH. Two different approaches are used according to the properties of the given failure time data. One is an approximation to a GPH through the piecewise Weibull failure rate(PWF) model and the other is a direct approximation to a GPH using the empirical distribution function. Two numerical examples are also presented. In the first example, both of the two approaches are utilized and compared for an incomplete data set. And in the second example, the direct approximation method from an empirical distribution is utilized for the analysis of a complete data set. In both cases, we could confirm the validity of the proposed method.

  • PDF